
C H A P T E R 4

Model-Building Strategies and
Methods for Logistic Regression

4.1 INTRODUCTION

In previous chapters we focused on estimating, testing, and interpreting the coeffi-
cients and fitted values from a logistic regression model. The examples discussed
were characterized by having few independent variables, and there was perceived
to be only one possible model. While there may be situations where this is the case,
it is more typical that there are many independent variables that could potentially
be included in the model. Hence, we need to develop a strategy and associated
methods for handling these more complex situations.

The goal of any method is to select those variables that result in a “best” model
within the scientific context of the problem. In order to achieve this goal we must
have: (i) a basic plan for selecting the variables for the model and (ii) a set of
methods for assessing the adequacy of the model both in terms of its individual
variables and its overall performance. In this chapter and the next we discuss
methods that address both of these areas.

The methods to be discussed in this chapter are not to be used as a substitute,
but rather as an addition to clear and careful thought. Successful modeling of a
complex data set is part science, part statistical methods, and part experience and
common sense. It is our goal to provide the reader with a paradigm that, when
applied thoughtfully, yields the best possible model within the constraints of the
available data.

4.2 PURPOSEFUL SELECTION OF COVARIATES

The criteria for including a variable in a model may vary from one problem to
the next and from one scientific discipline to another. The traditional approach to
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statistical model building involves seeking the most parsimonious model that still
accurately reflects the true outcome experience of the data. The rationale for min-
imizing the number of variables in the model is that the resultant model is more
likely to be numerically stable, and is more easily adopted for use. The more vari-
ables included in a model, the greater the estimated standard errors become, and the
more dependent the model becomes on the observed data. Epidemiologic method-
ologists suggest including all clinically and intuitively relevant variables in the
model, regardless of their “statistical significance.” The rationale for this approach
is to provide as complete control of confounding as possible within the given data
set. This is based on the fact that it is possible for individual variables not to exhibit
strong confounding, but when taken collectively, considerable confounding can be
present in the data, see Rothman et al. (2008), Maldonado and Greenland (1993),
Greenland (1989), and Miettinen (1976). The major problem with this approach is
that the model may be “overfit,” producing numerically unstable estimates. Overfit-
ting is typically characterized by unrealistically large estimated coefficients and/or
estimated standard errors. This may be especially troublesome in problems where
the number of variables in the model is large relative to the number of subjects
and/or when the overall proportion responding (y = 1) is close to either 0 or 1.
In an excellent tutorial paper, Harrell et al. (1996) discuss overfitting along with
other model building issues.

The following seven steps describe a method of selecting variables that we call
purposeful selection. The rationale behind the method is that it follows the steps
that many applied investigators employ when examining a set of data and then
building a multivariable regression model.

Step 1: Purposeful selection begins with a careful univariable analysis of each
independent variable. For categorical variables we suggest doing this via a
standard contingency table analysis of the outcome (y = 0, 1) versus the k

levels of the independent variable. The usual likelihood ratio chi-square test
with k − 1 degrees of freedom is exactly equal to the value of the likelihood
ratio test for the significance of the coefficients for the k − 1 design variables
in a univariable logistic regression model that contains that single independent
variable. Since the Pearson chi-square test is asymptotically equivalent to the
likelihood ratio chi-square test, it may also be used. In addition to the overall
test, it is a good idea, for those variables exhibiting at least a moderate level
of association, to estimate the individual odds ratios (along with confidence
limits) using one of the levels as the reference group.

Particular attention should be paid to any contingency table with a zero
(frequency) cell, since in that situation, most standard logistic regression
software packages will fail to converge and produce a point estimate for
one of the odds ratios of either zero or infinity. An intermediate strategy for
dealing with this problem is to collapse categories of the independent variable
in some sensible fashion to eliminate the zero cell. If the covariate with the
zero cell turns out to be statistically significant, we can revisit the problem
at a later stage using one of the special programs discussed in Section 10.3.
Fortunately, the zero cell problem does not occur too frequently.
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For continuous variables, the best univariable analysis involves fitting a
univariable logistic regression model to obtain the estimated coefficient, the
estimated standard error, the likelihood ratio test for the significance of the
coefficient, and the univariable Wald statistic. An alternative analysis, which
is nearly equivalent at the univariable level and that may be preferred in
an applied setting, is based on the two-sample t-test. Descriptive statistics
available from this analysis generally include group means, standard devia-
tions, the t statistic, and its p-value. The similarity of this approach to the
logistic regression analysis follows from the fact that the univariable linear
discriminant function estimate of the logistic regression coefficient is
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and that the linear discriminant function and the maximum likelihood esti-
mate of the logistic regression coefficient are usually quite close when the
independent variable is approximately normally distributed within each of the
outcome groups, y = 0, 1, [see Halpern et al. (1971)]. Thus, the univariable
analysis based on the t-test can be used to determine whether the variable
should be included in the model since the p-value should be of the same
order of magnitude as that of the Wald statistic, Score test, or likelihood ratio
test from logistic regression.

Through the use of these univariable analyses we identify, as candidates
for a first multivariable model, any variable whose univariable test has a
p-value less than 0.25 along with all variables of known clinical importance.

Our recommendation for using a significance level as high as 0.20 or 0.25
as a screening criterion for initial variable selection is based on the work by
Bendel and Afifi (1977) on linear regression and on the work by Mickey and
Greenland (1989) on logistic regression. These authors show that use of a
more traditional level (such as 0.05) often fails to identify variables known
to be important. Use of the higher level has the disadvantage of including
variables that are of questionable importance at this initial stage of model
development. For this reason, it is important to review all variables added to
a model critically before a decision is reached regarding the final model.

Step 2: Fit the multivariable model containing all covariates identified for inclu-
sion at Step 1. Following the fit of this model, we assess the importance of
each covariate using the p-value of its Wald statistic. Variables that do not
contribute, at traditional levels of statistical significance, should be eliminated
and a new model fit. The new, smaller, model should be compared to the old,
larger, model using the partial likelihood ratio test. This is especially impor-
tant if more than one term has been removed from the model, which is always
the case when a categorical variable with more than two levels has been
included using two or more design variables that appear to be not significant.
Also, one must pay attention to make sure that the samples used to fit the
larger and smaller models are the same. This becomes an issue when there are
missing data. We discuss strategies for handling missing data in Section 10.4.
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Step 3: Following the fit of the smaller, reduced model we compare the values
of the estimated coefficients in the smaller model to their respective values
from the larger model. In particular, we should be concerned about any
variable whose coefficient has changed markedly in magnitude [e.g., having
a value of �β̂ > 20%, see equation (3.9)]. This indicates that one or more
of the excluded variables are important in the sense of providing a needed
adjustment of the effect of the variables that remained in the model. Such
variable(s) should be added back into the model. This process of deleting,
refitting, and verifying continues, cycling through Step 2 and Step 3, until it
appears that all of the important variables are included in the model and those
excluded are clinically and/or statistically unimportant. In this process we
recommend that one should proceed slowly by deleting only a few covariates
at a time.

Step 4: Add each variable not selected in Step 1 to the model obtained at the
conclusion of cycling through Step 2 and Step 3, one at a time, and check
its significance either by the Wald statistic p-value or the partial likelihood
ratio test, if it is a categorical variable with more than two levels. This step is
vital for identifying variables that, by themselves, are not significantly related
to the outcome but make an important contribution in the presence of other
variables. We refer to the model at the end of Step 4 as the preliminary main
effects model.

Step 5: Once we have obtained a model that we feel contains the essential
variables, we examine more closely the variables in the model. The
question of the appropriate categories for categorical variables should
have been addressed during the univariable analysis in Step 1. For each
continuous variable in this model we must check the assumption that the logit
increases/decreases linearly as a function of the covariate. There are a number
of techniques and methods to do this and we discuss them in Section 4.2.1.
We refer to the model at the end of Step 5 as the main effects model.

Step 6: Once we have the main effects model, we check for interactions among
the variables in the model. In any model, as discussed and illustrated with
examples in Section 3.5, an interaction between two variables implies that
the effect of each variable is not constant over levels of the other variable.
As noted in Section 3.5, the final decision as to whether an interaction term
should be included in a model should be based on statistical as well as
practical considerations. Any interaction term in the model must make sense
from a clinical perspective.

We address the clinical plausibility issue by creating a list of possible pairs
of variables in the model that have some realistic possibility of interacting
with each other. The interaction variables are created as the arithmetic prod-
uct of the pairs of main effect variables. This can result in more than one
interaction term. For example, the interaction of two categorical variables,
each with three levels (i.e., two dummy variables), generates four interaction
variables. We add the interactions, one at a time, to the main effects model
from Step 5. (This may involve adding more than one term at a time to the
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model.) We then assess the statistical significance of the interaction using a
likelihood ratio test. Unlike main effects where we consider adjustment as
well as significance, we only consider the statistical significance of interac-
tions and as such, they must contribute to the model at traditional levels,
such as 5% or even 1%. Inclusion of an interaction term in the model that is
not significant typically just increases the estimated standard errors without
much change in the point estimates of effect.

Following the univariable analysis of the interaction terms we add each
interaction that was significant to the model at the end of Step 5. We then
follow Step 2 to simplify the model, considering only the removal of the
interaction terms, not any main effects. At this point we view the main effect
terms as being “locked” and they cannot be removed from the model. One
implication of “locking the main effects” is that we do not consider statistical
adjustment, �β̂%, when winnowing insignificant interactions.

We refer to the model at the conclusion of Step 6 as the preliminary final
model.

Step 7: Before any model becomes the final model we must assess its adequacy
and check its fit. We discuss these methods in Chapter 5. Note that regardless
of what method is used to obtain a multivariable statistical model, purposeful
selection or any of the other methods discussed in this chapter, one must
perform Step 7 before using the fitted model for inferential purposes.

Bursac et al. (2008) studied the properties of purposeful selection compared to
stepwise selection via simulations. The results showed that purposeful selection
retained significant covariates and also included covariates that were confounders
of other model covariates in a manner superior to stepwise selection.

As noted above, the issue of variable selection is made more complicated by
different analytic philosophies as well as by different statistical methods. One
school of thought argues for the inclusion of all scientifically relevant variables
into the multivariable model regardless of the results of univariable analyses.
In general, the appropriateness of the decision to begin the multivariable model
with all possible variables depends on the overall sample size and the number
in each outcome group relative to the total number of candidate variables. When
the data are adequate to support such an analysis it may be useful to begin the
multivariable modeling from this point. However, when the data are inadequate,
this approach can produce a numerically unstable multivariable model, discussed
in greater detail in Section 4.5. In this case the Wald statistics should not be used
to select variables because of the unstable nature of the results. Instead, we should
select a subset of variables based on results of the univariable analyses and refine
the definition of “scientifically relevant.”

Another approach to variable selection is to use a stepwise method in which
variables are selected either for inclusion or exclusion from the model in a sequen-
tial fashion based solely on statistical criteria. There are two main versions of the
stepwise procedure: (i) forward selection with a test for backward elimination and
(ii) backward elimination followed by a test for forward selection. The algorithms
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used to define these procedures in logistic regression are discussed in Section 4.3.
The stepwise approach is useful and intuitively appealing in that it builds models
in a sequential fashion and it allows for the examination of a collection of models
that might not otherwise have been examined.

“Best subsets selection” is a selection method that has not been used extensively
in logistic regression. With this procedure a number of models containing one, two,
three variables, and so on, are examined to determine which are considered the
“best” according to some specified criteria. Best subsets linear regression software
has been available for a number of years. A parallel theory has been worked out for
nonnormal errors models [Lawless and Singhal (1978, 1987a, 1987b)]. We show
in Section 4.4 how logistic regression may be performed using any best subsets
linear regression program.

Stepwise, best subsets, and other mechanical selection procedures have been crit-
icized because they can yield a biologically implausible model [Greenland (1989)]
and can select irrelevant, or noise, variables [Flack and Chang (1987); Griffiths and
Pope (1987)]. They may also fail to select variables that narrowly fail to achieve
the pre-designated threshold for inclusion into a model. The problem is not the
fact that the computer can select such models, but rather that the judgment of the
analyst is taken out of the process and, as a result, has no opportunity to scru-
tinize the resulting model carefully before the final, best model is reported. The
wide availability and ease with which stepwise methods can be used has undoubt-
edly reduced some analysts to the role of assisting the computer in model selection
rather than the more appropriate alternative. It is only when the analyst understands
the strengths, and especially the limitations of the methods that these methods can
serve as useful tools in the model-building process. The analyst, not the computer,
is ultimately responsible for the review and evaluation of the model.

4.2.1 Methods to Examine the Scale of a Continuous Covariate in the Logit

An important step in refining the main effects model is to determine whether the
model is linear in the logit for each continuous variable. In this section we discuss
four methods to address this assumption: (i) smoothed scatter plots, (ii) design
variables, (iii) fractional polynomials and (iv) spline functions.

As a first step, it is useful to begin checking linearity in the logit with a smoothed
scatterplot. This plot is helpful, not only as a graphical assessment of linearity but
also as a tool for identifying extreme (large or small) observations that could
unduly influence the assessment of linearity when using fractional polynomials or
spline functions. One simple and easily computed form of a smoothed scatterplot
was illustrated in Figure 1.2 using the data in Table 1.2. Other more complicated
methods that have greater precision are preferred at this stage.

Kay and Little (1986) illustrate the use of a method proposed by Copas (1983).
This method requires computing a smoothed value for the response variable for
each subject that is a weighted average of the values of the outcome variable over
all subjects. The weight for each subject is a continuous decreasing function of the
distance of the value of the covariate for the subject under consideration from the
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value of the covariate for all other cases. For example, for covariate x for the ith
subject we compute the smoothed value as

ysi =

iu∑
j=il

w(xi, xj )yj

iu∑
j=il

w(xi, xj )

,

where w(xi, xj ) represents a particular weight function. For example, if we use
STATA’s scatterplot lowess smooth command, with the mean option and bandwidth
k, then

w(xi, xj ) =
[

1 −
(∣∣xi − xj

∣∣3

�

)]3

,

where � is defined so that the maximum value for the weight is ≤1 and the two
indices defining the summation, il and iu, include the k percent of the n subjects
with x values closest to xi . Other weight functions are possible as well as additional
smoothing using locally weighted least squares regression, which is actually the
default in STATA.

In general, when using STATA, we use the default bandwidth of k = 0.8 and
obtain the plot of the triplet (xi, yi, ysi ), that is, the observed and smoothed values
of y on the same set of axes. The shape of the smoothed plot should provide some
idea about the parametric relationship between the outcome and the covariate.
Some packages, such as STATA’s lowess command, provide the option of plotting
the smoothed values, (xi, lsi ) where lsi = ln[ysi /(1 − ysi )], that is, plotting on
the logit scale, thus making it a little easier to make decisions about linearity in the
logit. The advantage of the smoothed scatter plot is that, if it looks linear then
the logit is likely linear in the covariate. One disadvantage of the smoothed scatter
plot is that if it does not look linear, most of us lack the experience to guess, with
any reliability, what function would satisfactorily reflect the displayed nonlinearity.
The parametric approaches discussed below are useful here since they specify a
best nonlinear transformation. Another disadvantage is that a smoothed scatterplot
does not easily extend to multivariable models.

The second suggested method is one that is easily performed in all statistical
packages and may be used with a multivariable model. The steps are as follows:
(i) using the descriptive statistics capabilities of your statistical package, obtain
the quartiles of the distribution of the continuous variable; (ii) create a categorical
variable with four levels using three cutpoints based on the quartiles. We note that
many other grouping strategies can be used but the one based on quartiles seems
to work well in practice; (iii) fit the multivariable model replacing the continuous
variable with the four-level categorical variable. To do this, one includes three
design variables that use the lowest quartile as the reference group; (iv) following
the fit of the model, plot the three estimated coefficients versus the midpoints



96 model-building strategies and methods for logistic regression

of the upper three quartiles. In addition, plot a coefficient equal to zero at the
midpoint of the first quartile. To aid in the interpretation connect the four plotted
points with straight lines. Visually inspect the plot. If it does not look linear then
choose the most logical parametric shape(s) for the scale of the variable.

The next step is to refit the model using the possible parametric forms suggested
by the plot and choose one that is significantly different from the linear model and
makes clinical sense. It is possible that two or more different parameterizations
of the covariate may yield similar results in the sense that they are significantly
different from the linear model. However, it is our experience that one of the possi-
ble models will be more appealing clinically, thus yielding more easily interpreted
parameter estimates.

The advantage of the first two methods is that they are graphical and easily
performed. The disadvantage, as noted, is that it is sometimes difficult to postulate
a parametric form from either a somewhat noisy plot (method 1) or from only four
points (method 2).

The third method is an analytic approach based on the use of fractional poly-
nomials as developed by Royston and Altman (1994). Since that key paper, Roys-
ton and colleagues have researched this method extensively and have written
numerous papers providing guidance to applied investigators. For example, see
Royston et al. (1999) and Sauerbrei and Royston (1999). The recent text on the
method by Royston and Sauerbrei (2008) provides a detailed and highly read-
able account of the method along with its extensions and contains numerous
numerical examples. Readers looking for more details are urged to consult this
reference.

The essential idea is that we wish to determine what value of xp yields the
best model for the covariate. In theory, we could incorporate the power, p, as an
additional parameter in the estimation procedure. However, this greatly increases
the numerical complexity of the estimation problem. Royston and Altman (1994)
propose replacing full maximum likelihood estimation of the power by a search
through a small but reasonable set of possible values. The method is described in
the second edition of this text, Hosmer and Lemeshow (2000) and Hosmer et al.
(2008) provide a brief, but updated introduction to fractional polynomials when
fitting a proportional hazards regression model. This material provides the basis
for the discussion.

The method of fractional polynomials may be used with a multivariable logistic
regression model, but for the sake of simplicity, we describe the procedure using
a model with a single continuous covariate. The equation for a logit, that is linear
in the covariate, is

g(x, β) = β0 + β1x,

where β, in general, denotes the vector of model coefficients. One way to generalize
this function is to specify it as

g(x, β) = β0 +
J∑

j=1

βj × Fj (x),
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where the functions Fj (x) are a particular type of power function. The value of the
first function is F1(x) = xp1 . In theory, the power, p1, could be any number, but
in most applied settings it makes sense to try to use something simple. Royston
and Altman (1994) propose restricting the power to be among those in the set =
{−2, −1,−0.5, 0, 0.5, 1, 2, 3}, where p1 = 0 denotes the log of the variable.
The remaining functions are defined as

Fj (x) =
{
xpj , pj �= pj−1
Fj−1 (x) ln(x), pj = pj−1

for j = 2, . . . , J and restricting powers to those in . For example, if we chose
J = 2 with p1 = 0 and p2 = −0.5, then the logit is

g(x, β) = β0 + β1 ln(x) + β2
1√
x

.

As another example, if we chose J = 2 with p1 = 2 and p2 = 2, then the logit is

g(x, β) = β0 + β1x
2 + β2x

2 ln(x).

The model is quadratic in x when J = 2 with p1 = 1 and p2 = 2. Again, we
could allow the covariate to enter the model with any number of functions, J , but
in most applied settings an adequate transformation is found if we use J = 1 or 2.

Implementation of the method requires, for J = 1, fitting 8 models, that is
p1 ∈ . The best model is the one with the largest log-likelihood (or smallest
deviance). The process is repeated with J = 2 by fitting the 36 models obtained
from the distinct pairs of powers (i.e., (p1, p2) ∈ × ) and the best model is
again the one with the largest log-likelihood (or smallest deviance).

The relevant question is whether either of the two best models is significantly
better than the linear model. Let L(1) denote the log-likelihood for the linear
model (i.e., J = 1 and p1 = 1) and let L(p1) denote the log-likelihood for the best
J = 1 model and L(p1, p2) denote the log-likelihood for the best J = 2 model.
Royston and Altman (1994) and Ambler and Royston (2001) suggest, and verify
with simulations, that each term in the fractional polynomial model contributes
approximately 2 degrees of freedom to the model, effectively one for the power
and one for the coefficient. Thus, the partial likelihood ratio test comparing the
linear model to the best J = 1 model,

G(1, p1) = −2{L(1) − L(p1)},
is approximately distributed as chi-square with one degree of freedom under the null
hypothesis that the logit is linear in x. The partial likelihood ratio test comparing
the best J = 1 model to the best J = 2 model,

G[p1, (p1, p2)] = −2{L(p1) − L(p1, p2)},
is approximately distributed as chi-square with 2 degrees of freedom under the
hypothesis that the J = 2 model is not significantly different from the J = 1 model.
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Similarly, the partial likelihood ratio test comparing the linear model to the best
J = 2 model is distributed approximately as chi-square with 3 degrees of freedom.
(Note: to keep the notation simple, we use p1 to denote the best power both when
J = 1 and as the first of the two powers for J = 2. These are not likely to be the
same numeric value in practice.)

In an applied setting we can use the partial likelihood ratio test in two ways to
determine whether a transformation is significantly better than the linear model: a
closed test and a sequential test [see Sauerbrei et al. (2006) and cited references].
We note that Sauerbrei, Meier-Hirmer, Benner, and Royston consider a model that
does not contain x as the base model. We use the linear model as the base model
since, at the end of step 3, we have eliminated all statistically nonsignificant or
clinically unimportant covariates.

The closed test procedure begins by comparing the best two-term fractional poly-
nomial model to the linear model using G[1, (p1, p2)]. If this test is not significant,
at a typical level such as 0.05, then we stop and use the linear model. If the test
is significant then the best two-term fractional polynomial model is compared to
the best one-term fractional polynomial model using G[p1, (p1, p2)]. If this test is
significant then we select the two-term model; otherwise select the one-term model.

The sequential test procedure begins by comparing the best two-term frac-
tional polynomial model to the best one-term fractional polynomial model using
G[p1, (p1, p2)]. If this test is significant we select the two-term model. If it is not
significant then we compare the best one-term fractional polynomial model to the
linear model using G[1, (p1, p2)]. If the test is significant then we select the best
one-term model; otherwise we use the linear model.

Ambler and Royston (2001) examined the type I error rates of the two test-
ing methods via simulations and concluded that the closed test is better than the
sequential test at maintaining the overall error rate. Thus, we use the closed test
method in this text.

Whenever a one or two-term model is selected we highly recommend that the
resulting functional form be critically examined for subject matter plausibility.
The best way to do this is by plotting the fitted model versus the covariate. We
explain how to do this and illustrate it with the examples later in this chapter. One
should always ask the obvious question: Does the functional form of the fractional
polynomial transformation make sense within the context of the study? If it really
does not make sense then we suggest using the linear model or possibly another
fractional polynomial model. In almost every example we have encountered, where
one of the two best fractional polynomial models is better than the linear model
there is another fractional polynomial model that is also better whose deviance
is trivially larger than the selected best model. This other model may provide a
more clinically acceptable transformation. For example, assume that the closed test
procedure selects the two-term model with powers (2, 3). This transformation may
have a deviance that is not much smaller than that of the two-term quadratic model
(1, 2). From a subject matter perspective the quadratic model may make more
sense and be more easily explained than the best model. In this case we would not
hesitate to use the quadratic model.
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The only software package that has fully implemented the method of fractional
polynomials within the distributed package is STATA. In addition to the method
described above, STATA’s fractional polynomial routine offers the user consid-
erable flexibility in expanding the set of powers, , searched; however, in most
settings the default set of values should be more than adequate. STATA’s implemen-
tation also includes valuable graphical displays of the transformed model. Sauerbrei
et al. (2006) provide links to obtain macros for SAS and R code that can be used
to perform all the fractional polynomial analyses done with STATA in this text.

So far the discussion of fractional polynomials has been in the setting of a simple
univariable logistic regression model. In practice, most models are multivariable
and can contain numerous continuous covariates, each of which must be checked
for linearity. The approach we described above, where we checked for linearity
one variable at a time, is the one we use in Step 5 of purposeful selection.

Royston and Ambler (1998, 1999) extended the original fractional polynomial
software to incorporate an iterative examination for scale with multivariable models.
The default method incorporates recommendations discussed in detail in Sauerbrei
and Royston (1999). Multivariable modeling using fractional polynomials is avail-
able in distributed STATA and can be performed in SAS and R using the macros
and code that can be obtained from links in Sauerbrei et al. (2006). We describe
model building using multivariable fractional polynomials in Section 4.3.3.

We have found, in our practice, a level of reluctance by applied investigators to
use fractional polynomial transformations, regardless of how much clinical sense
they might make, because they think the model is too complicated to estimate odds
ratios. We showed in Section 3.5 that by carefully following the four-step procedure
for estimating odds ratios, one is able to obtain the correct expression involving
the model coefficients to estimate any odds ratio, no matter how complicated the
model might be.

The fourth method of checking for linearity in the logit is via spline func-
tions. Spline functions have been used in statistical applications to model nonlinear
functions for a long time; well before the advent of computers and modern sta-
tistical software brought computer intensive methods to the desk top [see, for
example, Poirier (1973), who cites pioneering work on these functions by Schoen-
berg (1946)]. Harrell (2001, pp. 18–24) presents a concise mathematical treatment
of the spline function methods we discuss in this section. Royston and Sauerbrei
(2008, Chapter 9) compare spline functions to fractional polynomials.

The basic idea behind spline functions is to mathematically mimic the use of
the draftsman’s spline to fit a series of smooth curves that are joined at specified
points, called “knots”. In this section we consider linear and restricted cubic spines
as these are the ones commonly available in statistical packages (e.g., STATA and
SAS).

We begin our discussion by considering linear splines based on three knots.
We discuss how to choose the number of knots and where these knots should be
placed shortly. The linear spline variables used in the fit can be parameterized with
coefficients representing the slope in each interval, or alternatively, by the slope in
the first interval and the change in the slope from the previous interval. We use the
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former parameterization, in which case the definitions of the four spline variables
formed from three knots are as follows:

x1 = min(X, k1)

and
xj = max[min(X, kj ), kj−1] − kj−1, j = 2, . . . , 4

where k1, k2 and k3 are the three knots. The four linear spline variables used in the
fit are as follows:

xl1 =
{
X, if X < k1,

k1, if k1 ≤ X,

xl2 =
⎧⎨⎩

0, if X < k1,

X − k1, if k1 ≤ X < k2,

k2 − k1, if k2 ≤ X,

xl3 =
⎧⎨⎩

0, if X < k2,

X − k2, if k2 ≤ X < k3,

k3 − k2, if k3 ≤ X,

xl4 =
{

0, if X < k3,

X − k3, if k3 ≤ X,

where the subscript “l” stands for linear spline.
The equation of the logit is

g(xl , βl ) = βl0 + βl1xl1 + βl2xl2 + βl3xl3 + βl4xl4. (4.1)

Under the model in equation (4.1) the equation of the logit in the four intervals
defined by the three knots is as follows:

g(xl , βl )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βl0 + βl1X if X < k1,

βl0 + βl1k1 + βl2

(
X − k1

)
= [βl0 + βl1k1 − βl2k2] + βl2X

if k1 ≤ X < k2,

βl0 + βl1k1 + βl2(k2 − k1) + βl3(X − k3)

= [βl0 + βl1k1 + βl2(k2 − k1) − βl3k3] + βl3X
if k2 ≤ X < k3,

βl0 + βl1k1 + βl2(k2 − k1) + βl3(k3 − k2) + βl4(X − k3)

= [βl0 +βl1k1 +βl2(k2 −k1)+βl3(k3 −k2)−βl4k3] + βl4X
if k3 ≤ X.

Thus, the slopes of the lines in the four intervals are given by βlj , j = 1, 2, 3, 4
and the four intercepts are functions of βlj , j = 0, 1, 2, 3, 4 and the three knots.

While linear spline functions, like those in equation (4.1), are relatively easy and
simple to describe they may not be sufficiently flexible to model a complex non-
linear relationship between an outcome and a covariate. In these settings restricted
cubic splines are a good choice. In this approach the spline functions are linear
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in the first and last intervals and are cubic functions in between, but join at the
knots. Restricting the functions to be linear in the tails serves to eliminate wild
fluctuations than can be a result of a few extreme data points. The definitions of
the restricted cubic spline variables, used by STATA, formed from three knots are
as follows:

xc1 = X,

and

xc2 = 1

(k3 − k1)
2

×
{(

X − k1

)3
+ − (k3 − k2)

−1
[(

X − k2

)3
+ (k3 − k1)

− (
X − k3

)3
+ (k2 − k1)

]}
= 1

(k3 − k1)
2

×
{(

X − k1

)3
+ − (X − k2)

3+(k3 − k1)

(k3 − k2)
+ (X − k3)

3+(k2 − k1)

(k3 − k2)

}
,

where the function (u)+ is defined as

(u)+ =
{

0, u ≤ 0
u, u > 0

and the logit is
g(xc, βc) = βc0 + βc1xc1 + βc2xc2. (4.2)

The restricted cubic spline covariate, xc2, is obviously much more complex and
more difficult to understand from its formula than the linear spline covariates. The
value of this covariate in each of the four intervals is as follows:

xc2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if X < k1,

(X−k1)3

(k3−k1)2 = X3∗
c2 if k1 ≤ X < k2,

1
(k3−k1)2

{(
X − k1

)3 − (X−k2)3(k3−k1)

(k3−k2)

}
= − a

bc2 {X3∗ − 3cX2∗ + 3acX∗ − a2c} if k2 ≤ X < k3,

1
(k3−k1)2

{(
X − k1

)3 − (X−k2)3(k3−k1)

(k3−k2)
+ (X−k3)3(k2−k1)

(k3−k2)

}
= a

c
[3X∗ − (a + c)]

if k3 ≤ X,

where
X∗ = X − k1, a = k2 − k1, b = k3 − k2, and c = a + b. (4.3)

Obviously, one could use as many or as few knots as one wished. The more knots
one chooses the more flexible the resulting fit, but at a price of more parameters to
estimate. In most applications three to five knots are sufficient. One could choose
the knots to be equally spaced over the range of the covariate. For example, if the
range of the covariate was from 0 to 50 and one wanted four knots then one could
choose values 10, 20, 30, and 40. One might choose equally spaced percentiles,
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Table 4.1 Distribution Percentiles Defining Placement of
Knots for Splines

# of Knots Percentiles

3 10 50 90
4 5 35 65 95
5 5 27.5 50 73.5 95
6 5 23 41 59 77 95
7 2.5 18.33 34.17 65.83 81.67 97.5
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Figure 4.1 Lowess smooth on the log-odds scale of outcome Y versus the covariate X, n = 500.

for example, the 25th, 50th and 75th for three knots. Alternatively, Harrell (2001)
provides percentiles, for three to seven knots, that have been shown in simulations
to provide a good fit to wide range of shapes. These are given in Table 4.1.

Before we use purposeful selection with one of our data sets to build a model
we present an example illustrating each of the four methods to examine the scale
of a continuous covariate. The data are hypothetical and have been generated
with a slightly asymmetric but quadratic-like shape. The data are available as
Scale_Example and contain 500 observations of a continuous covariate, X, ranging
from 20 to 70 and a binary outcome, Y , coded 0 and 1.

The first method discussed in this section is the graphical presentation of the
lowess smooth of the outcome versus the covariate. This was computed in STATA
and is shown in Figure 4.1. Recall that the lowess smooth provides a nonparametric
description of the relationship between the logit or log-odds and the covariate.
Hence, if there is any nonlinearity in the relationship it should be apparent in
this plot. In fact, in this example, the departure from linearity is easily seen in
Figure 4.1. The relationship is clearly asymmetric in shape. However, describing its
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shape mathematically from the figure would represent a challenge that is beyond the
capabilities of most readers (and even the authors) of this book. Hence, the lowess
smooth, while quite useful for displaying nonlinearity in the logit does not lend
itself well to modeling decisions about what the correct scale might actually be.

When faced with a complex relationship like the one shown in Figure 4.1 subject
matter investigators might decide to categorize the covariate into four groups, effec-
tively using the quartile design variables. We categorized X into four groups using
cutpoints of 32, 44, and 56, which are the quartiles rounded to whole numbers. The
estimated coefficients and standard errors for this logistic model are presented in
Table 4.2. As described earlier, to check linearity in the logit we would plot each
of the coefficients versus the midpoint of the interval, using 0.0 as the coefficient
for the first quartile. Were we to present this plot it would show the log-odds ratios
[each point comparing the log-odds for each quartile to the log-odds for the first
quartile (i.e., the reference group)]. However, to compare the lowess smooth to
the fitted model in Table 4.2 we need to plot its linear predictor (i.e., the logit, or
log-odds). To plot the fitted logit values computed from the model in Table 4.2 we
compute the following:

logit(X) = β0 + β1 × (X_2) + β2 × (X_3) + β3 × (X_4)

=

⎧⎪⎪⎨⎪⎪⎩
0.754 − 2.213 (0) − 4.451(0) − 1.992(0) if X < 32
0.754 − 2.213(1) − 4.451(0) − 1.992(0) if 32 ≤ X < 44
0.754 − 2.213(0) − 4.451(1) − 1.992(0) if 44 ≤ X < 56
0.754 − 2.213(0) − 4.451(0) − 1.992(1) if 56 ≤ X.

This provides the values needed for the step function seen in Figure 4.2.
Next, we fit the model using linear splines with knots at 32, 44, and 56. The

fit of the model using four linear splines in equation (4.1) is shown in Table 4.3.
Due to the way the spline variables were created the coefficients estimate the slope
of the logit in each interval. The magnitude of the slopes agrees with the plot in
Figure 4.1, in that they become progressively less negative and then positive.

In order to compare the three approaches illustrated so far, we plot each on the
same set of axes in Figure 4.2. In addition, we plot the value of the linear spline
fit at each of the three knots. In order to better compare the linear spline fit to the
fit from the quartile design variables, we plot the mean value of the logit from the
linear spline fit within each quartile versus the midpoint of the quartile. In looking

Table 4.2 Results of Fitting the Logistic Regression Model with Quartile
Design Variables (X_ j), n = 500

Variable Coeff. Std. Err. z p

X_2 −2.213 0.3006 −7.36 <0.001
X_3 −4.451 0.6151 −7.24 <0.001
X_4 −1.992 0.2850 −6.99 <0.001
Constant 0.754 0.1917 3.93 <0.001
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Figure 4.2 Plot of the fitted model using quartiles (—), linear splines (– –), and the lowess smooth
(--). Also shown are the three knots (Knotj, �) and the mean of the linear spline fit within each
quartile (gmnj, •), n = 500.

Table 4.3 Results of Fitting the Logistic Regression Model with Linear
Spline Variables at Knots 32, 44, and 56, n = 500

Variable Coeff. Std. Err. z p

xl1 −0.280 0.0552 −5.08 <0.001
xl2 −0.191 0.0542 −3.52 <0.001
xl3 −0.055 0.0673 −0.81 0.418
xl4 0.302 0.0591 5.12 <0.001
Constant 8.263 1.5619 5.29 <0.001

at the plot several things become apparent: The fits from the linear splines and
quartile design variables follow the lowess smooth to the extent that their inherent
discreteness allows. The fit from the quartile design variables approximates quite
closely the mean of the fit from the linear splines. So, in essence, one might say
that using quartile design variables is a “poor man’s” linear spline fit. Lastly, both
fits are just too discrete to help suggest a model that could capture the nonlinearity
seen in the lowess smooth.

In order to better explore the complicated nonlinear relationship between the
logit of Y and X we display the results of using fractional polynomials in Table 4.4.
The values in the column “Dev. Dif.” present the difference between the deviance
from the model defined by the row and that of the two-term model in the last row.
This is the closed test procedure. The fact that the p-values are <0.001 in each
row tells us that the two-term fractional polynomial (2, 2) is significantly different
(better) than the model fit in each row. In particular, it is better than both the
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Table 4.4 Results of the Fractional Polynomial Analysis

X df Deviance Dev. Dif. p Powers

Not in model 0 592.953 206.085 <0.001
Linear 1 521.007 134.14 <0.001 1
m = 1 2 452.668 65.8 <0.001 −2
m = 2 4 386.868 2 2

linear fit and the one-term fractional polynomial model with power −2. Hence,
from a purely statistical view point we would choose the two-term model. Recall
the powers (2, 2) means that this model contains X2 and X2 × ln(X). The fit of
this model is shown in Table 4.5.

The results in Table 4.5 indicate that the coefficients for both fractional poly-
nomial variables are significant, but it is difficult to tell what the shape of the
resulting logit as a function of the covariate X would be by simply looking at the
coefficients. (Note that we divided X by 10 in calculating Xfp1 and Xfp2 so that
the estimated coefficients are not excessively small.) The best and easiest way to
make some judgment about shape is to examine the plot of the function. This is
shown as the solid line in Figure 4.3.

Next, we fit the model with restricted cubic splines. The results are presented in
Table 4.6. The first thing we note about the fit in Table 4.6 is that both estimated
coefficients are significant, but are of a completely different magnitude than those
for the fractional polynomial model in Table 4.5. Again, the only way to really
understand the fit is via a plot. Figure 4.3 now includes the fit from the restricted
cubic spline model and the lowess smooth in addition to the fractional polynomial
model described earlier.

It is difficult to see from the plots in Figure 4.3 which of the two models fits better
in the sense of mimicking the lowess fit. However, the deviance of the fractional
polynomial model is 386.868 while that of the restricted cubic spline model is
395.128, a difference of 8.260, which suggests that the fractional polynomial model
has the better fit. We also note that the fractional polynomial model appears to
model the asymmetry better than the restricted cubic spline model. The knots
used correspond to the quartiles and not the 10th, 50th, and 90th percentiles as
suggested in Table 4.1. The fit using these knots (24, 44, and 66) had just a slightly

Table 4.5 Results of Fitting the Two-Term Fractional Polynomial (2, 2)

Model, n = 500

Variable Coeff. Std. Err. z p

Xfp1 −1.883 0.1751 −10.75 <0.001
Xfp2 0.892 0.0843 10.58 <0.001
Constant 7.959 0.7874 10.11 <0.001

Xfp1 = (X/10)2 and Xfp2 = (X/10)2 × ln(X/10)
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Figure 4.3 Plot of the fitted model using the two-term fractional polynomial (—), restricted cubic
splines (– –), and the lowess smooth (--).

Table 4.6 Results of Fitting the Restricted Cubic Spline
Model with Knots at 32, 33, and 56, n = 500

Variable Coeff. Std. Err. z p

xc1 −0.292 0.0274 −10.67 <0.001
xc2 0.298 0.0313 9.51 <0.001
Constant 8.639 0.8706 9.92 <0.001

smaller deviance, 391.646. Using four knots placed at the percentiles in Table 4.1
yields a model with effectively the same deviance as the fractional polynomial
model, but at a cost of more parameters and much more complex parameterization
of X. Hence our conclusion is that, based on statistical considerations, the two-
term fractional polynomial model provides the better nonlinear fit from among the
models explored. The phrase “statistical considerations” is an important qualifier, as
the resulting shape of the logit must make clinical sense before it is used in further
modeling. One other point, which we do not illustrate here, is that estimating
odds ratios is considerably easier with fractional polynomial models than it is
with restricted cubic spline models. Thus, if the goal is to model a nonlinear logit
and to then estimate odds ratios for this covariate we highly recommend using
fractional polynomials over restricted cubic splines. On the other hand if the goal
is simply to model nonlinearity in the logit to control for confounding without odds
ratio estimation then restricted cubic splines offer the possibility to model a quite
complex relationship without actually having to specify its parametric form.

One special type of “continuous” variable that occurs reasonably often in practice
is one that has many values at “zero”. Consider a study in which subjects are asked
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to report their lifetime use of cigarettes. All the nonsmokers report a value of zero.
A one-half pack-a-day smoker for 20 years has a value of approximately 73,000
cigarettes. What makes this covariate unusual is the fact that the zero value occurs
with a frequency much greater than expected for a fully continuous distribution.
In addition, the nonzero values typically exhibit right skewness. Robertson et al.
(1994) show that the correct way to model such a covariate is to include two
terms, one that is dichotomous recording zero versus nonzero and one for the
actual recorded value. Thus, the logit for such a model is

g(x, β) = β0 + β1d + β2x,

where d = 0 if x = 0 and d = 1 if x > 0. The advantage of this parameterization
is that it allows us to model two different odds ratios. The odds ratio comparing a
nonsmoker to a smoker with x∗ lifetime cigarettes is

OR(x = x∗, x = 0) = eβ1+β2x∗

and the odds ratio for an increase of c in lifetime cigarettes is

OR(x = x + c, x = x) = eβ2c.

Note that during the modeling process we still need to check the scale in the
logit for the positive values of the covariate. Since the distribution of x is typically
skewed, fractional polynomial analysis often suggests using the one-term transfor-
mations ln(x) or

√
x. As noted above, odds ratios can be estimated by following

the four step method discussed in Chapter 3.

4.2.2 Examples of Purposeful Selection

Example 1: The GLOW Study. For our first example of purposeful selection we
use the GLOW500 data. This study is described in detail in Section 1.6.3 and
the variables are described in Table 1.7. Before beginning, we remind the reader
that these data are a sample from the much larger GLOW study. In particular, we
over sampled fractures to obtain a modest sized data set where meaningful model
building would be possible. This analysis provides a good example of an analysis
designed to identify risk factors for a specified binary outcome. In this example,
the outcome is fracture during the first year of follow up. Among the 500 women
in this data set 125 (25%) had an incident fracture.

Step 1: The first step in purposeful selection is to fit a univariable logistic
regression model for each covariate. The results of this analysis are shown
in Table 4.7. Note that in this table, each row presents the results for
the estimated regression coefficient(s) from a model containing only that
covariate.
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Table 4.7 Results of Fitting Univariable Logistic Regression Models in the GLOW
Data, n = 500

Coeff. Std. Err. ÔR 95% CI G p

AGE 0.053 0.0116 1.30a 1.16, 1.46 21.27 <0.001
WEIGHT −0.0052 0.0064 0.97b 0.91, 1.04 0.67 0.415
HEIGHT −0.052 0.0171 0.60c 0.43, 0.83 9.53 0.002
BMI 0.006 0.0172 1.03d 0.87, 1.22 0.11 0.738
PRIORFRAC 1.064 0.2231 2.90 1.87, 4.49 22.27 <0.001
PREMENO 0.051 0.2592 1.05 0.63, 1.75 0.04 0.845
MOMFRAC 0.661 0.2810 1.94 1.12, 3.36 5.27 0.022
ARMASSIST 0.709 0.2098 2.03 1.35, 3.07 11.41 0.001
SMOKE −0.308 0.4358 0.74 0.31, 1.73 0.53 0.469
RATERISK
RATERISK_2 0.546 0.2664 1.73 1.02, 2.91 11.76 0.003
RATERISK_3 0.909 0.2711 2.48 1.46, 4.22

aOdds Ratio for a 5-year increase in AGE.
bOdds Ratio for a 5 kg increase in WEIGHT.
cOdds Ratio for a 10 cm increase in HEIGHT.
dOdds Ratio for a 5 kg/m2 increase in BMI.

Table 4.8 Results of Fitting the Multivariable Model with All Covariates Significant
at the 0.25 Level in the Univariable Analysis in the GLOW Data, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.034 0.0130 2.63 0.008 0.009, 0.060
HEIGHT −0.044 0.0183 −2.40 0.016 −0.080, −0.008
PRIORFRAC 0.645 0.2461 2.62 0.009 0.163, 1.128
MOMFRAC 0.621 0.3070 2.02 0.043 0.020, 1.223
ARMASSIST 0.446 0.2328 1.91 0.056 −0.011, 0.902
RATERISK_2 0.422 0.2792 1.51 0.131 −0.1253, 0.969
RATERISK_3 0.707 0.2934 2.41 0.016 0.132, 1.282
Constant 2.709 3.2299 0.84 0.402 −3.621, 9.040

Step 2: We now fit our first multivariable model that contains all covariates that
are significant in univariable analysis at the 25% level. The results of this fit
are shown in Table 4.8. Once this model is fit we examine each covariate
to ascertain its continued significance, at traditional levels, in the model.
We see that the covariate with the largest p-value that is greater than 0.05
is for RATERISK2, the design/dummy variable that compares women with
RATERISK = 2 to women with RATERISK = 1. The likelihood ratio test
for the exclusion of self-reported risk of fracture (i.e., deleting RATERISK_2
and RATERISK_3 from the model) is G = 5.96, which with two degrees of
freedom, yields p = 0.051, nearly significant at the 0.05 level.

Step 3: Next we check to see if covariate(s) removed from the model in Step 2
confound or are needed to adjust the effects of covariates remaining in the
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model. In results not shown, we find that the largest percent change is 17%
for the coefficient of ARMASSIST. This does not exceed our criterion of
20%. Thus, we see that while self-reported rate of risk is not a confounder
it is an important covariate. No other covariates are candidates for exclusion
and thus, we continue using the model in Table 4.8.

Step 4: On univariable analysis the covariates for weight (WEIGHT), body mass
index (BMI), early menopause (PREMENO) and smoking (SMOKE) were
not significant. When each of these covariates is added, one at a time, to the
model in Table 4.8 its coefficient did not become significant. The only change
of note is that the significance of BMI changed from 0.752 to 0.334. Thus
the next step is to check the assumption of linearity in the logit of continuous
covariates age and height.

Before moving to step 5 we consider another possible model. Since the
coefficient for RATERISK_2 is not significant, one possibility is to combine
levels 1 and 2, self-reported risk less than or the same as other women, into
a new reference category. The advantage of this is that the new covariate is
dichotomous, but we loose information about the specific log-odds of cat-
egories 1 and 2. On consultation with subject matter investigators, it was
thought that combining these two categories is reasonable. Hence we fit this
model and its results are shown in Table 4.9. In this model, the coefficient
for the covariate RATERISK_3 now provides the estimate of the log of the
odds ratio comparing the odds of fracture for individuals in level 3 to that of
the combined group consisting of levels 1 and 2.

Step 5: At this point we have our preliminary main effects model and must now
check for the scale of the logit for continuous covariates age and height. We
presented four different methods in Section 4.2.1: the lowess smooth, quartile
design variables, fractional polynomials and spline functions. In most applied
settings we would always use the lowess smooth and fractional polynomials
and also do so here. We also illustrate the design variable approach, as it
is always an option. We reserve use of spline functions to settings where
the best two-term fractional polynomial model does not seem to provide an
adequate representation of the what we see in the lowess smooth.

Table 4.9 Results of Fitting the Multivariable Model after Collapsing
Rate Risk into Two Categories, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.033 0.0129 2.56 0.010 0.008, 0.059
HEIGHT −0.046 0.0181 −2.55 0.011 −0.082, −0.011
PRIORFRAC 0.664 0.2452 2.71 0.007 0.184, 1.145
MOMFRAC 0.664 0.3056 2.17 0.030 0.065, 1.263
ARMASSIST 0.473 0.2313 2.04 0.041 0.019, 0.926
RATERISK_3 0.458 0.2381 1.92 0.054 −0.009, 0.925
Constant 3.407 3.1770 1.07 0.284 −2.820, 9.633
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Figure 4.4 Lowess smooth on the log-odds scale of the outcome, fracture during the first year of
follow-up, versus AGE, n = 500.

Table 4.10 Results of the Quartile Design Variable Analyses of AGE (x) from the
Multivariable Model Containing the Variables Shown in the Model in Table 4.9

Quartile 1 2 3 4

Range x < 62 62 ≤ x < 68 68 ≤ x < 77 77 ≤ x

Midpoint 58.5 65 72.5 83.5
Coeff. 0.0 0.610 0.590 0.970
95% CI −0.059, 1.278 −0.050, 1.229 0.311, 1.629

The lowess smooth for the outcome fracture versus age on the logit or log-odds
scale is shown in Figure 4.4. Other than an inconsequential wiggle over age less
than about 58, the plotted lowess smooth appears nearly linear, suggesting that
there is no reason to suspect that the logit is not linear in age.

Next we examine the scale of age in the logit using quartile design variables.
The results of the fit for age when it is replaced with quartile design variables in
the multivariable model (Table 4.9) are shown in Table 4.10 and are plotted in
Figure 4.5.

The confidence intervals for the coefficients in Table 4.10 for quartiles two and
three each contain one, while that for the fourth quartile does not contain one.
This suggests that the log-odds for fracture does not seem to increase significantly
until after about age 72. Based on these results one might be tempted to replace
age, as represented by a continuous variable, with a dichotomous variable that uses
the design variable for the fourth quartile. This portrays a slightly different picture
than that seen in Figure 4.4, where the lowess smoothed logit increases gradually
over the entire range of age. We return to this point after performing the fractional
polynomial analysis of age.
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Figure 4.5 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of AGE.

Table 4.11 Results of the Fractional Polynomial Analysis of AGE

df Deviance Dev. dif. p Powers

Not in Model 0 516.421 7.468 0.113
Linear 1 509.818 0.865 0.834 1
m = 1 2 509.257 0.304 0.859 −2
m = 2 4 508.953 3 3

The results of the fractional polynomial analysis are shown in Table 4.11. In
general, when we perform a fractional polynomial analysis we proceed under the
assumption that we have already decided that it is important to have the covariate
in the model. Hence, we tend to ignore the results in the first row that compares
the best two-term fractional polynomial model to the model not containing the
covariate. The first test we look at is the one in the second row that compares the
best two-term fractional polynomial model to the model treating the covariate as
linear in the logit, indicated by “1” in the Powers column. In Table 4.11 the value
of the likelihood ratio test is given in the “Dev. Dif.” column and its p-value is
in the “p” column. In this case, the test is not significant as p = 0.834, leading to
the conclusion that the best fractional polynomial transformation is not better than
the linear model. While the closed test procedure stops at this point, we always
examine the results in the last two rows to see what transformations have been
selected and to make sure we have not missed anything. In this case, all signs
point toward treating age as linear in the logit.

The fact that the lowess smooth looks quite linear and that the supporting results
from the factional polynomial analysis suggest that nothing new could be learned
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about the scale of the logit in AGE from a spline variable analysis. Hence, we
choose not to use it.

We remarked in discussing the plot of the quartile design variables that one might
elect to dichotomize AGE at the fourth quartile. Categorization of a continuous
covariate is, unfortunately, a relatively common practice in many applied fields.
The temptation of its simplicity seems, in the minds of proponents, to outweigh the
considerable loss of information about the covariate in such a strategy. See Royston
et al. (2006) for a full discussion of the pitfalls of dichotomizing a continuous
covariate. In results we do not show, but leave as an exercise, the deviance from
the model using the dichotomous version of AGE is larger than that of the model
in Table 4.9. Thus our decision is to treat AGE as continuous and linear in the
logit.

Next we examine the continuous variable HEIGHT to determine whether it is
linear in the logit. The plots of two lowess smooths on the logit scale are shown in
Figure 4.6. The solid line corresponds to the smooth using all 500 subjects, while
the dashed line is the smooth when one subject with a height of 199 cm is excluded.
We excluded this subject to see what effect she had on the shape of the smooth.
Neither smooth appears to be linear for heights less than 180 cm. The question
is whether this represents a “significant” departure from linear. We examine this
question using both quartile design variables and fractional polynomials (as shown
in Figure 4.7).

The plot of the estimated coefficients from the quartile design variables for height
shown in Figure 4.7 are based on fitting a model with n = 500, as the 199 cm tall
woman has little effect on the coefficient in the last column of Table 4.12. The plot
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Figure 4.6 Lowess smooth on the log-odds scale of the outcome, fracture during the first year of
follow up, versus HEIGHT, n = 500 (solid) and n = 499 (dashed).
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Figure 4.7 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of HEIGHT.

Table 4.12 Results of the Quartile Design Variable Analyses of HEIGHT from the
Multivariable Model Containing the Variables Shown in the Model in Table 4.9

Quartile 1 2 3 4

Range x ≤ 157 157 < x ≤ 161.5 161.5 < x ≤ 165 x > 165
Midpoint 145.5 159.25 163.25 182
Coeff. 0.0 −0.266 −0.369 −0.628
95% CI −0.861, 0.329 −0.964, 0.226 −1.255, −0.001

Table 4.13 Results of the Fractional Polynomial Analysis of HEIGHT

df Deviance Dev. Dif. p Powers

Not in Model 0 516.558 8.574 0.073
Linear 1 509.818 1.834 0.608 1
m = 1 2 509.137 1.154 0.562 −2
m = 2 4 507.984 −2 −2

is strikingly linear, giving a different impression of the parametric form than what
is seen in Figure 4.6.

We turn to fractional polynomials to sort out the discrepancies seen in Figure 4.6
and Figure 4.7. These results are shown in Table 4.13 where we see that the two-
term fractional polynomial with powers (−2,−2) is far from significantly different
from the linear model. We ran the analysis excluding the 199 cm woman and the
results are not appreciably different from those in Table 4.13. Hence our conclusion
is to treat HEIGHT as linear in the logit. For the time being, we are going to retain



114 model-building strategies and methods for logistic regression

Table 4.14 Log-Likelihood, Likelihood Ratio Test (G , df = 1), and p-Value for the
Addition of the Interactions to the Main Effects Model

Interaction Log-Likelihood G p

Main Effects Model −254.9089
AGE*HEIGHT −254.8422 0.13 0.715
AGE*PRIORFRAC −252.3921 5.03 0.025
AGE*MOMFRAC −254.8395 0.14 0.710
AGE*ARMASSIST −254.8358 0.15 0.702
AGE*RATERISK3 −254.3857 1.05 0.306
HEIGHT*PRIORFRAC −254.8024 0.21 0.645
HEIGHT*MOMFRAC −253.7043 2.41 0.121
HEIGHT*ARMASSIST −254.1112 1.60 0.207
HEIGHT*RATERISK3 −254.4218 0.97 0.324
PRIORFRAC*MOMFRAC −253.5093 2.80 0.094
PRIORFRAC*ARMASSIST −254.7962 0.23 0.635
PRIORFRAC*RATERISK3 −254.8476 0.12 0.726
MOMFRAC*ARMASSIST −252.5179 4.78 0.029
MOMFRAC*RATERISK3 −254.6423 0.53 0.465
ARMASSIST*RATERISK3 −253.7923 2.23 0.135

the 199 cm woman in the analysis, waiting until we examine her influence using
diagnostic statistics in Chapter 5. Hence our final main effects model is the one
whose fit is shown in Table 4.9.

Step 6: The next step in the purposeful selection procedure is to explore possible
interactions among the main effects. The subject matter investigators felt that
each pair of main effects represents a plausible interaction. Hence, we fit
models that individually added each of the 15 possible interactions to the main
effects model. The results are summarized in Table 4.14. Three interactions
are significant at the 10 percent level: Age by prior fracture (PRIORFRAC),
prior fracture by mother had a fracture (MOMFRAC) and mother had a
fracture by arms needed to rise from a chair (ARMASSIST). We note that
prior fracture and mother having had a fracture are involved in two of the
three significant interactions.

The next step is to fit a model containing the main effects and the three
significant interactions. The results of this fit are shown in Table 4.15. The
three degree of freedom likelihood ratio test of the interactions model in
Table 4.15 versus the main effects model in Table 4.9 is G = 11.03 with p =
0.012. Thus, in aggregate, the interactions contribute to the model. However,
one interaction, prior fracture by mother’s fracture, is not significant with a
Wald statistic p = 0.191. Next, we fit the model excluding this interaction
and the results are shown in Table 4.16.

The estimated coefficients in the interactions model in Table 4.16 are, with
one exception, significant at the five percent level. The exception is the esti-
mated coefficient for the dichotomized self-reported risk of fracture, RATERISK3



purposeful selection of covariates 115

Table 4.15 Results of Fitting the Multivariable Model with the Addition of Three
Interactions, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.058 0.0166 3.49 0.000 0.025, 0.091
HEIGHT −0.049 0.0184 −2.65 0.008 −0.085, −0.013
PRIORFRAC 4.598 1.8780 2.45 0.014 0.917, 8.278
MOMFRAC 1.472 0.4229 3.48 0.000 0.644, 2.301
ARMASSIST 0.626 0.2538 2.46 0.014 0.128, 1.123
RATERISK3 0.474 0.2410 1.97 0.049 0.002, 0.947
AGE*PRIORFRAC −0.053 0.0259 −2.05 0.040 −0.104, −0.002
PRIORFRAC*MOMFRAC −0.847 0.6475 −1.31 0.191 −2.116, 0.422
MOMFRAC*ARMASSIST −1.167 0.6168 −1.89 0.058 −2.376, 0.042
Constant 1.959 3.3272 0.59 0.556 −4.562, 8.481

Table 4.16 Results of Fitting the Multivariable Model with the Significant
Interactions, n = 500

Coeff. Std. Err. z p 95% CI

AGE 0.057 0.0165 3.47 0.001 0.025, 0.090
HEIGHT −0.047 0.0183 −2.55 0.011 −0.083, −0.011
PRIORFRAC 4.612 1.8802 2.45 0.014 0.927, 8.297
MOMFRAC 1.247 0.3930 3.17 0.002 0.476, 2.017
ARMASSIST 0.644 0.2519 2.56 0.011 0.150, 1.138
RATERISK3 0.469 0.2408 1.95 0.051 −0.003, 0.941
AGE*PRIORFRAC −0.055 0.0259 −2.13 0.033 −0.106, −0.004
MOMFRAC*ARMASSIST −1.281 0.6230 −2.06 0.040 −2.502, −0.059
Constant 1.717 3.3218 0.52 0.605 −4.793, 8.228

(1 = more, 0 = same or less) with p = 0.051. We elect to retain this in the model
since the covariate is clinically important and its significance is nearly five percent.
Hence the model in Table 4.16 is our preliminary final model. Its fit, adherence
to model assumptions and assessment for influence of individual subjects is exam-
ined in Chapter 5. Following this assessment we present the results of the model in
terms of odds ratios for estimates of the effect of each covariate on fracture during
the first year of follow up.

In summary, our first example of model building using purposeful selection with
the GLOW data illustrated: selecting variables, examining the scale in the logit for
two continuous covariates and selecting and refining interactions. The resulting
model in Table 4.16 is, in a sense, relatively simple in that it contains only two
interactions. There was no statistical evidence of nonlinearity in the logit for the
two continuous covariates.

Example 2: The Burn Injury Study. The second example is one where the goal is
to obtain a model that could be used for estimating the probability of the response,
as well as, to some extent, for quantifying the effect of individual risk factors. We
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use the Burn Injury Study data described in Section 1.6.5 and Table 1.9. The data,
BURN1000, contain information on a burn injury for 1000 subjects, 150 of whom
died. As noted in Section 1.6.5 these data were sampled from a much larger data
set and deaths were over sampled. Since the goal is to develop a model to estimate
the probability of death from burn injury we would like a parsimonious model that
would be likely to perform well in another data set. As we show later, these data
illustrate some of the challenges that one can face when modeling a continuous
covariate that is nonlinear in the logit. There are only six covariates and we have
a large total sample size (1000) and number of outcomes (150), so rather than
perform steps 1 and 2, we begin by fitting the model containing all covariates. The
results of this fit are shown in Table 4.17.

In Table 4.17 the Wald test for the coefficient for GENDER is not significant
with p = 0.513 and that of FLAME has p = 0.100. When we delete GENDER and
refit the model the significance of the Wald test for FLAME becomes p = 0.094
and there is no evidence of confounding by GENDER. After consultation with an
experienced burn surgeon, we decided to remove FLAME from the model for the
reason that there are many different ways that flame could be involved with a burn
injury and using simple yes or no coding is not precise enough to be helpful. In
addition, we are striving for a model that is as parsimonious as possible. Thus
our preliminary main effects model contains only four covariates: age (AGE),
burn surface area (TBSA), race (RACE: 0 = non-white, 1 = white) and inhalation
injury involved (INH_INJ, 0 = no, 1 = yes). The results of this fit are shown in
Table 4.18.

Table 4.17 Results of Fitting a Multivariable Model to the Burn Injury Data
Containing All Available Covariates, n = 1000

Coeff. Std. Err. z p 95% CI

AGE 0.083 0.0086 9.61 <0.001 0.066, 0.100
TBSA 0.089 0.0091 9.83 <0.001 0.072, 0.107
GENDER −0.201 0.3078 −0.65 0.513 −0.805, 0.402
RACE −0.701 0.3098 −2.26 0.024 −1.309, −0.094
INH_INJ 1.365 0.3618 3.77 <0.001 0.656, 2.074
FLAME 0.583 0.3545 1.64 0.100 −0.112, 1.277
Constant −7.695 0.6912 −11.13 <0.001 −9.050, −6.341

Table 4.18 Preliminary Main Effects Model for the Burn Injury Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGE 0.084 0.0085 9.95 <0.001 0.068, 0.101
TBSA 0.090 0.0091 9.95 <0.001 0.073, 0.108
RACE −0.624 0.2989 −2.09 0.037 −1.209, −0.038
INH_INJ 1.523 0.3512 4.34 <0.001 0.835, 2.211
Constant −7.595 0.6090 −12.47 <0.001 −8.788, −6.401
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Table 4.19 Results of the Quartile Design Variable Analyses of the Scale of AGE

Quartile 1 2 3 4

Range x ≤ 10.8 10.8 < x ≤ 31.9 31.9 < x ≤ 51.2 51.2 < x

Midpoint 5.45 21.35 41.55 70.45
Coeff. 0.0 −0.483 1.139 3.770
95% CI −1.994, 1.029 −0.066, 2.343 2.629, 4.912
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Figure 4.8 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of AGE.

The next step is to examine the scale in the logit for age and burn surface
area. We begin by considering age in the multivariable model in Table 4.18. The
estimated coefficients for the quartile design variables are presented in Table 4.19
and plotted versus the quartile midpoints in Figure 4.8.

Only the estimated coefficient for the fourth versus the first quartile is significant.
However, the plot shows that the log-odds of dying decreases and then increases,
which makes clinical sense as subjects between 15 and 25, all things being equal,
are known to have better outcomes than those who are younger or older. Next, we
explore this in detail using the lowess smooth, fractional polynomials and restricted
cubic splines.

The results of the fractional polynomial analysis of age are presented in
Table 4.20. The p-values show that the two-term fractional polynomial model is
better than the linear model at the 10% level but not different from the one-term
fractional polynomial model. We know that a one-term fractional polynomial
model is monotonic, so cannot be of the shape seen in Figure 4.8. Hence, at this
point, we are going to consider both the one-term (m = 1) and two-term (m = 2)
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Table 4.20 Results of the Fractional Polynomial Analysis of AGE

df Deviance Dev. Dif. p Powers

Not in Model 0 520.362 187.147 <0.001
Linear 1 339.785 6.569 0.087 1
m = 1 2 336.849 3.634 0.163 2
m = 2 4 333.215 3 3

fractional polynomial models as possible parameterizations of the scale of age in
the logit.

Before moving on, we offer a few further comments on the models in Table 4.20.
First, the model in the m = 2 row is the one with the numerically smallest deviance
among the 36 two-term models fit. By using the “log” option in STATA we can
obtain the value of the deviance for all models fit. Using this feature (output not
shown) we find that there are three other two-term models [powers: (1, 0.5), (1, 1),
and (2, 3)] with a deviance that differs by at most 0.7 from the best model. Note
that the powers of these three models are, in a sense, no more easily interpreted
than the best model’s powers of (3, 3). Thus, there is no compelling reason to use
any one of those as an alternative to the (3, 3) model. A natural follow up question
is: If the best one-term model uses power 2, then, is the quadratic model (1, 2) an
option? In this case, the deviance for the quadratic model is 335.368, which is not
significantly different from the deviance for the power 2 model as G = 1.47 and
p = 0.225. Also, the second best one-term model is the linear model.

Hence, by using STATA’s log option we have found another model, powers
1 and 2, that may be more easily interpreted than the best fractional polynomial
model. If the goal of the analysis is to estimate measures of effect for risk factors for
death following a burn injury then it would make good sense to use the quadratic
model as it is more easily interpreted than the power 2 model by a subject matter
audience. However, our modeling goal is not effect estimation but rather estimation
of the probability of death following a burn injury. For the latter goal the smaller
model, power 2, may be better than the larger model, powers 1 and 2. Also, we still
have additional steps in model building to perform: examining the scale of percent
body surface area burned in the logit and assess the need to include interactions.
In practice we would likely perform the remaining steps for both parameterizations
of age. Then we would assess model adequacy and performance using the methods
discussed in Chapter 5 and choose the better of the two models. This is not practical
in a text so we are going to proceed with the smaller, power 2 model and leave
parallel model development and evaluation, using the quadratic parameterization
of age as an exercise for the reader.

Next, we try modeling age using restricted cubic splines. We found (in work we
do not show here but leave as an exercise) that the best spline model is one with
four knots at the percentiles in Table 4.1. The values of these four knots are: 1.1,
19, 44.37, and 78.87 years of age. The fit of this model is shown in Table 4.21,
where AGESPL1, AGESPL2, and AGESPL3 are the three restricted cubic splines
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Table 4.21 Fit Modeling AGE with Restricted Cubic Splines Formed from Four
Knots at 1.1, 19, 44.37 and 78.87 Years, n = 1000

Coeff. Std. Err. z p 95% CI

AGESPL1 −0.063 0.0608 −1.04 0.297 −0.182, 0.056
AGESPL2 0.507 0.2644 1.92 0.055 −0.011, 1.026
AGESPL3 −0.921 0.5208 −1.77 0.077 −1.941, 0.100
TBSA 0.091 0.0092 9.92 <0.001 0.073, 0.109
RACE −0.562 0.3065 −1.83 0.067 −1.163, 0.039
INH_INJ 1.516 0.3565 4.25 <0.001 0.817, 2.215
Constant −5.721 0.7578 −7.55 <0.001 −7.206, −4.236

in AGE created from the four knots using an extension of the three-knot spline
variable shown in equation (4.3).

In order to compare the shape of the logit in AGE for the two fractional poly-
nomial models and the cubic spline model compared to the lowess smooth we plot
all four logit functions versus age. The three parametric logit functions were scaled
so that their average is the same as the average of the lowess smoothed logit. The
purpose of this is to obtain a plot where the four curves are more easily compared.
As an example, what we calculated to plot for the cubic spline is

gspl = −0.063 × AGESPL1 + 0.507 × AGESPL2 − 0.921 × AGESPL3.

We calculated the mean of gspl and then added a constant to it so its mean would
be equal to the mean of the lowess smooth. Similar calculations were performed
using the estimated coefficient of AGE2 to obtain gfp1, the mean adjusted one-
term fractional polynomial model in AGE2 and for gfp2, the mean adjusted two-
term fractional polynomial model in AGE3 and AGE3 × ln(AGE). These are
shown in Figure 4.9.

We begin by comparing the four functions in the neighborhood of 20 years of
age. The upper most of the four curves is the lowess smoothed logit, followed by the
one-term fractional polynomial and the two-term fractional polynomial model. The
lowest value results from the fit of the restricted cubic spline model. We see that
the lowess smooth is nearly linear. The two fractional polynomial models are both
increasing functions of age and are similar to each other, supporting p = 0.163
from Table 4.20. The plot of the restricted cubic spline fit has a dip, reaching
its minimum at about 17 years of age and then it increases and nearly coincides
with the two-term fractional polynomial model for age greater than 40. The plot
of the restricted cubic spline also has the same form as the plot of the estimated
coefficients from the quartile design variables in Figure 4.8.

The plots in Figure 4.9 leave us with some difficult choices. The most reasonable
clinical model is the one using restricted cubic splines. However, it comes at the
cost of having to use the three complex spline variables that are not easily explained,
except in a figure, to clinicians. Thus, the effect of age would have to be estimated
using the four-step procedure discussed in Chapter 3. The algebra necessary to
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Figure 4.9 Plot of estimated logit from fits based on one (- - -) and two-term (—) fractional poly-
nomials, restricted cubic spline (– – –), and the lowess smooth (−ċ − ċ−) of AGE. All fitted logistic
regression models contain TBSA, RACE and INH_INJ.

obtain the difference in the logits is quite complicated and would yield an extremely
complex equation in the spline variables and the three estimated coefficients in
Table 4.21. Hence, although this is a problem that has a solution and the method
for obtaining it is straightforward, the work involved is formidable. We note that
once done it could be programmed. Thus, if our goal was simply to model these
data we would choose to proceed with the restricted cubic splines. However, from
a practical point of view, our goal is to obtain a clinically interpretable model to
estimate the probability of death following a burn injury for potential use with
new data. Hence our decision is to use the simple one-term fractional polynomial
model as it is better than the linear model and as good as the two-term fractional
polynomial model.

Before we leave consideration of the functional form in age we discuss a statis-
tical measure that is commonly used to compare models with different numbers of
parameters, the Akaike Information Criterion (AIC), Akaike (1974). This measure
is defined as

AIC = −2 × L + 2 × (p + 1), (4.4)

where L is the log-likelihood of the fitted model and p is the number of regres-
sion coefficients estimated for nonconstant covariates. Note that in Chapters 1
and 2 we defined the deviance of the fitted model as D = −2 × L, thus AIC =
D + 2 × (p + 1). In general, lower values of AIC are preferred to larger ones. In
the current example, the deviance from the fitted one-term fractional polynomial
model is D = 336.842. The model has five coefficients: an intercept and one each
for AGE2, TBSA, RACE, and INH_INJ. For testing purposes the transformation,
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Table 4.22 Results of the Quartile Design Variable Analyses of the Scale of TBSA

Quartile 1 2 3 4

Range x ≤ 2.5 2.5 < x ≤ 6 6 < x ≤ 16 x > 16
Midpoint 1.3 4.25 11.0 57.0
Coeff. 0.0 0.512 1.216 3.851
95% CI −0.729, 1.752 0.059, 2.372 2.758, 4.943

power 2, is also considered as an estimated parameter. Hence, in this case we
need to add 12 = 2 × (4 + 1 + 1) to the deviance not 10 = 2 × (4 + 1), yielding
AIC = 348.842. The value of the deviance for the spline model is D = 331.923.
This model contains seven parameters, thus AIC = 345.923, which is smaller than
the AIC for the one-term factional polynomial model. Hence, all things being
equal, we would prefer the spline to the one-term fractional polynomial model.
However, all things are not really equal so the considerably greater complexity of
the spline model leads us to choose the one-term fractional polynomial model, even
though it has a larger value of AIC. There is no statistical test to compare values
of AIC.

Now that we have decided what transformation to use for age we apply the same
methods to check the scale of burn area (TBSA) in the logit. At this point, we are
often asked if it is better to use the transformed version of a previously examined
covariate or the untransformed form. In our practice, we have not seen a set of
data where using different forms gives different results. We discuss a multivariable
fractional polynomial selection method in Section 4.5 that uses an iterative pro-
cess using all transforms from previous iterations. So, in the current example, we
follow the guidelines for purposeful selection and use AGE (untransformed) when
examining the scale of burn area.

We begin by replacing TBSA in the model with the quartile-based design vari-
ables. Results for the estimated coefficients are given in Table 4.22 and plotted
versus the quartile midpoint in Figure 4.10. The plot shows some departure from
linearity over the first three quartiles, from 0 to 11%. Since the fourth quartile
covers such a wide range we cannot see any nonlinearity in the plot beyond 11%.

The next step is to use fractional polynomials, the results of which are shown
in Table 4.23. The best two-term fractional polynomial has powers −2 and 0.5. It
is significantly better than the linear model with p = 0.013 but is not better than
the one-term fractional polynomial with power 0.5, the square root (p = 0.772).
Hence, we select the one-term transformation as best. We note that the shape of
the plot in Figure 4.10 in the region less than 11% looks like a square root plot.
The shape also is consistent with the burn surgeon’s clinical impression of the
effect of the size of burn area on mortality. The fit of this model is presented in
Table 4.24.

With such straightforward and clinically plausible results from the fractional
polynomial analysis we would, likely, not bother with a restricted cubic splines
analysis. However, as another opportunity to demonstrate this method, we include
this analysis. For TBSA, splines from three knots at the 10th (1%), 50th (6%),



122 model-building strategies and methods for logistic regression

0

1

2

3

4

Lo
g-

od
ds

0 20 40 60
Burn area (%)

Figure 4.10 Plot of estimated logistic regression coefficients for the quartile design variables versus
approximate quartile midpoints of TBSA.

Table 4.23 Results of the Fractional Polynomial Analysis of
TBSA

df Deviance Dev. Dif. p Powers

Not in Model 0 532.483 203.409 <0.001
Linear 1 339.785 10.711 0.013 1
m = 1 2 329.592 0.518 0.772 .5
m = 2 4 329.074 — — −2 .5

Table 4.24 Fit of the Model Using TBSAFP1 = √
TBSA, the One-Term Fractional

Polynomial Transformation, n = 1000

Coeff. Std. Err. z p 95% CI

TBSAFP1 0.922 0.0871 10.59 <0.001 0.751, 1.092
AGE 0.085 0.0086 9.84 <0.001 0.068, 0.101
RACE −0.623 0.3031 −2.05 0.040 −1.217, −0.029
INH_INJ 1.595 0.3463 4.60 <0.001 0.916, 2.273
Constant −9.526 0.7544 −12.63 <0.001 −11.005, −8.048

and 90th (34.45%) percentiles of the distribution of burn area perform better (i.e.,
smaller deviance and AIC) than from four knots.

The results of the fit of the model using the two spline variables are shown in
Table 4.25. In Figure 4.11 we plot the lowess smoothed logit and the mean adjusted
logit from the one-term fractional polynomial fit,

gfp1 = 0.922 ×
√

TBSA − 5.468
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Table 4.25 Fit Modeling TBSA with Restricted Cubic Splines Formed from Three
Knots at 1.0, 6.0 and 34.45 Percent Burn Area, n = 1000

Coeff. Std. Err. z p 95% CI

TBSASPL1 0.217 0.0441 4.90 <0.001 0.130, 0.302
TBSASPL2 −0.331 0.1103 −3.00 0.003 −0.549, −0.116
AGE 0.085 0.0086 9.82 <0.001 0.068, 0.102
RACE −0.637 0.3033 −2.10 0.036 −1.232, −0.043
INH_INJ 1.610 0.3506 4.59 <0.001 0.923, 2.297
Constant −8.592 0.7387 −11.63 <0.001 −10.039, −7.143
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Figure 4.11 Plot of estimated logit from fits based on one-term (—) fractional polynomial, restricted
cubic spline (· · ·) and the lowess smooth (– – –) of TBSA. All fitted logistic regression models contain
AGE, RACE, and INH_INJ.

and the spline fit in Table 4.25,

gspl = 0.217 × TBSASPL1 − 0.331 × TBSASPL2 − 4.331,

where the subtracted constants are the mean adjustments.
There is virtually no difference in the plot of the logit based on the square root of

TBSA and the restricted cubic spline model. We note that the lowess smoothed logit
departs from these two models above 40 percent burn area. While covering a large
range there are fewer than 10% of the subjects with burns this severe. The deviance
for the fractional polynomial model is D = 329.589 and, treating the power as
an estimated parameter, yields AIC = 329.589 + 2 × (4 + 1 + 1) = 341.589. The
deviance for the spline model is D = 330.299 and AIC = 330.299 + 2 × (5 + 1) =
342.299. Hence we choose the model containing AGE2, the square root of TBSA,
RACE and INH_INJ as our main effects model and its fit is shown in Table 4.26
where AGEFP1 = (AGE/10)2, and TBSAFP1 = √

TBSA.
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Table 4.26 Main Effects Model for the Burn Injury Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGEFP1 0.087 0.0082 10.53 <0.001 0.071, 0.103
TBSAFP1 0.936 0.0874 10.71 <0.001 0.765, 1.108
RACE −0.609 0.3096 −1.97 0.049 −1.216, −0.002
INH_INJ 1.433 0.3421 4.19 <0.001 0.763, 2.104
Constant −7.957 0.5967 −13.34 <0.001 −9.127, −6.788

Table 4.27 Preliminary Final Model With Interaction Term for the Burn Injury
Data, n = 1000

Coeff. Std. Err. z p 95% CI

AGEFP1 0.096 0.0096 10.02 <0.001 0.077, 0.115
TBSAFP1 0.912 0.0878 10.39 <0.001 0.740, 1.084
RACE −0.623 0.3100 −2.01 0.045 −1.231, −0.015
INH_INJ 2.420 0.5452 4.44 <0.001 1.351, 3.488
AFP1xINH −0.034 0.0145 −2.35 0.019 −0.063, −0.006
Constant −8.215 0.6314 −13.01 <0.001 −9.453, −6.978

The next step in the analysis is to select interactions. With only four main effects
we examined all 6 possible interactions by adding one at a time to the model in
Table 4.26. Two were significant at the 10 percent level: AGEFP1 by INH_INJ and
TBSAFP1 by RACE. The interaction of TBSAFP1 by RACE did not make clinical
sense to the burn surgeon and thus we excluded it from further consideration. The
fit of the model with the interaction is shown in Table 4.27, where AFP1xINH
denotes the interaction between AGEFP1 and INH_INJ.

Before leaving this example, let us revisit the goals of the analysis. The inter-
action term in Table 4.27 is highly significant, demonstrating that the presence or
absence of inhalation involvement with the burn injury modifies the effect of age
and, likewise, age modifies the effect of inhalation involvement. Clearly, if we
were interested in estimating the effect of risk factors for death we would prefer
the model in Table 4.27. However, it is not clear that inclusion of the interaction
would improve estimation of the probability of death. Again, simpler is sometimes
better, and so, for the time being, we are going to consider both models (the ones
presented in Tables 4.26 and 4.27) as possible models until we evaluate their fit
and performance in Chapter 5.

4.3 OTHER METHODS FOR SELECTING COVARIATES

In the previous section we discussed purposeful selection, a method that is com-
pletely controlled by the analyst, to select a subset of covariates from a larger
collection. There are other commonly used methods where selection is more auto-
mated and statistically driven. Two approaches have a long history in statistical
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model building: stepwise selection and best subsets selection. A recent addition
combines a version of stepwise selection with fractional polynomial modeling of
continuous covariates. We consider each of these methods in this section and show
how they are related to one another and compare them to purposeful selection in
the context of modeling the GLOW data.

4.3.1 Stepwise Selection of Covariates

Stepwise selection of covariates has a long history in linear regression. All the
major software packages have either a separate program or an option to perform
this type of analysis. Currently, most, if not all, major software packages offer
an option for stepwise logistic regression. At one time, stepwise regression was an
extremely popular method for model building. Over the years there has been a shift
away from deterministic methods for model building to methods like purposeful
selection discussed in the previous section. However, we feel that stepwise meth-
ods may be useful as effective data analysis tools. In particular, there are times
when the outcome being studied is relatively new and the important covariates
may not be known and associations with the outcome not well understood. In these
instances, most studies collect many possible covariates and screen them for sig-
nificant associations. Employing a stepwise selection procedure can provide a fast
and effective means to screen a large number of variables, and to fit a number of
logistic regression equations simultaneously.

Any stepwise procedure for selection or deletion of variables from a model is
based on a statistical algorithm that checks for the “importance” of variables, and
either includes or excludes them on the basis of a fixed decision rule. The “impor-
tance” of a variable is defined in terms of a measure of the statistical significance
of the coefficient, or coefficients when multiple design variables are used, for the
variable. The statistics used depend on the assumptions of the model. In stepwise
linear regression an F -test is used, since the model assumes that the errors are nor-
mally distributed. In logistic regression the errors are assumed to follow a binomial
distribution, and significance can be assessed using any one of the three equivalent
tests discussed in Chapters 1 and 2: likelihood ratio, score, and Wald test. A par-
ticular software package may or may not offer the user a choice of which of the
three tests to use. We use the likelihood ratio test, in what follows, to describe the
methods. The other two tests could be used equally well. In practice, we have not
seen important differences in models identified when the three tests are used on
the same set of data. Given a choice we prefer to use the likelihood ratio test but
use of one of the other tests by a statistical package does not present a problem or
disadvantage.

We discussed in Chapter 3 that a polychotomous variable with k levels is appro-
priately modeled through its k − 1 design variables. Since the magnitude of the
likelihood ratio test, G, depends on its degrees of freedom, any procedure based
on the likelihood ratio test, or one of the other two tests, must account for possible
differences in degrees of freedom between variables. This is done by assessing
significance through the p-value for G.
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We describe and illustrate the algorithm for forward selection followed by back-
ward elimination in stepwise logistic regression. Any variants of this algorithm are
simple modifications of this procedure. The method is described by considering the
statistical computations that the computer must perform at each step.

Step (0): Assume that we have available a total of p possible independent vari-
ables, all of which are judged to be of plausible “clinical” importance in studying
the outcome variable. Step (0) begins by fitting the “intercept only model” and
evaluating its log-likelihood, L0. Next, each of the p possible univariable logistic
regression models is fit and its corresponding log-likelihood computed. Let the
value of the log-likelihood for the model containing variable xj at step zero be
denoted by L

(0)
j . The subscript j refers to the variable that has been added to the

model, and the superscript (0) refers to the step. This notation is used throughout
the discussion of stepwise logistic regression to keep track of both step number
and variables in the model.

Let the value of the likelihood ratio test for the model containing xj versus the
intercept only model, be denoted by G

(0)
j = −2(L0 − L

(0)
j ), and its p-value be

denoted by p
(0)
j . This p-value is equal to the probability Pr[χ2(ν) > G

(0)
j ] = p

(0)
j ,

where ν = 1 if xj is continuous or dichotomous, and ν = k − 1 if xj is
polychotomous with k categories.

The “most important” variable is the one with the smallest p-value. If we denote
this variable by xe1

, then p
(0)
e1 = min(p

(0)
j ), where “min” stands for selecting the

minimum of the quantities enclosed in the brackets. The subscript “e1” is used
to denote that the variable is a candidate for entry at step 1. For example, if
variable x2 had the smallest p-value, then p

(0)
2 = min(p

(0)
j ), and e1 = 2. The fact

that xe1
is the most important variable does not guarantee that it is “statistically

significant”. For example, if p
(0)
e1 = 0.83, we would probably conclude that there

is little point in continuing this analysis because the most important variable is not
related to the outcome. On the other hand, if p

(0)
e1 = 0.003, we would examine the

logistic regression containing this variable and then determine whether there are
other variables that are important given that xe1 is in the model.

A crucial factor when using stepwise logistic regression is the choice of an
“alpha” level to judge the importance of variables. Let pE denote our choice where
the “E” stands for entry. The choice for pE determines how many variables even-
tually are included in the model. Bendel and Afifi (1977) studied the choice of pE
for stepwise linear regression, and Costanza and Afifi (1979) studied the choice for
stepwise discriminant analysis. Lee and Koval (1997) examined the issue of sig-
nificance level for forward stepwise logistic regression. The results of this research
have shown that the choice of pE = 0.05 is too stringent, often excluding important
variables from the model. Choosing a value for pE in the range from 0.15 to 0.20
is highly recommended.

Sometimes the goal of the analysis may be to provide a more complete set
of possible predictors of the response variable. In these cases, use of pE = 0.25
(or even larger) might be a reasonable choice. Whatever the choice for pE, a
variable is judged important enough to include in the model if the p-value for G
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is less than pE. Thus, the program proceeds to step (1) if p
(0)
e1 < pE; otherwise, it

stops.
Step (1): This step begins with a fit of the logistic regression model containing

xe1
. Let L

(1)
e1 denote the log-likelihood of this model. To determine whether

any of the remaining p − 1 variables are important once the variable xe1
is

in the model, we fit the p − 1 logistic regression models containing xe1
and

xj , j = 1, 2, 3, . . . , p and j �= e1. For the model containing xe1
and xj let

the log-likelihood be denoted by L
(1)
e1j , and let the likelihood ratio chi-square

statistic of this model versus the model containing only xe1
be denoted by

G
(1)
j = −2(L

(1)
e1 − L

(1)
e1j ). The p-value for this statistic is denoted by p

(1)
j . Let the

variable with the smallest p-value at step (1) be xe2
where p

(1)
e2 = min(p

(1)
j ). If

this value is less than pE then we proceed to Step (2); otherwise we stop.
Step (2): The step begins with a fit of the model containing both xe1

and xe2
. It

is possible that once xe2
has been added to the model, xe1

is no longer important.
Thus, Step (2) includes a check for backward elimination. In general, this check
is done by fitting models that delete one of the variables added in the previous
steps to assess the continued importance of the variable removed. At Step (2) let
L

(2)
−ej

denote the log-likelihood of the model with xej
removed. In similar fashion

let the likelihood ratio test of this model versus the full model at Step (2) be
G

(2)
−ej

= −2(L
(2)
−ej

− L
(2)
e1e2) and p

(2)
−ej

be its p-value.
To ascertain whether a variable should be deleted from the model the program

selects that variable, which when removed, yields the maximum p-value. Denoting
this variable as xr2

, then p
(2)
r2 = max(p

(2)
−e1

, p
(2)
−e2

). To decide whether xr2
should

be removed, the program compares p
(2)
r2 to a second pre-chosen “alpha” level

pR, which indicates some minimal level of continued contribution to the model
where “R” stands for remove. Whatever value we choose for pR, it must exceed
the value of pE to guard against the possibility of having the program enter and
remove the same variable at successive steps.

If we do not wish to exclude many variables once they have entered, then
we might use pR = 0.9. A more stringent value would be used if a continued
“significant” contribution were required. For example, if we used pE = 0.15, then
we might choose pR = 0.20. If the maximum p-value to remove p

(2)
r2 , exceeds pR,

then xr2
is removed from the model. If p

(2)
r2 is less than pR then xr2

remains in the
model. In either case the program proceeds to the variable selection phase.

At the forward selection step each of the p − 2 logistic regression models are fit
containing xe1

, xe2
and xj for j = 1, 2, 3, . . . p, j �= e1, e2. The program evaluates

the log-likelihood for each model, computes the likelihood ratio test versus the
model containing only xe1

and xe2
and determines the corresponding p-value. Let

xe3
denote the variable with the minimum p-value, that is, p

(2)
e3 = min(p

(2)
j ). If

this p-value is smaller than pE, p
(2)
e3 < pE, then the program proceeds to Step (3);

otherwise, it stops.
Step (3): The procedure for Step (3) is identical to that of Step (2). The program

fits the model including the variable selected during the previous step, performs a
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check for backward elimination followed by forward selection. The process con-
tinues in this manner until the program stops at Step (S).

Step (S): This step occurs when: (i) all p variables have entered the model or
(ii) all variables in the model have p-values to remove that are less than pR, and
the variables not included in the model have p-values to enter that exceed pE. The
model at this step contains those variables that are important relative to the criteria
of pE and pR. These may or may not be the variables reported in a final model. For
instance, if the chosen values of pE and pR correspond to our preferred levels for
statistical significance, then the model at step S may well contain the significant
variables. However, if we have used values for pE and pR that are less stringent,
then we should select the variables for a final model from a table that summarizes
the results of the stepwise procedure.

There are two methods that may be used to select variables from a summary
table; these are comparable to methods commonly used in stepwise linear regres-
sion. The first method is based on the p-value for entry at each step, while the
second is based on a likelihood ratio test of the model at the current step versus
the model at the last step. In most cases we prefer to use the first method as it can
be performed with the output provided by statistical packages.

Let “q” denote an arbitrary step in the procedure. In the first method we compare
p

(q−1)
eq to a pre-chosen significance level such as α = 0.15. If the value p

(q−1)
eq is

less than α, then we move to Step (q). We stop at the step when p
(q−1)
eq exceeds α.

We consider the model at the previous step for further analysis. In this method the
criterion for entry is based on a test of the significance of the coefficient for xeq

conditional on xe1
, xe2

, . . . , xeq−1
being in the model. The degrees of freedom for

the test are 1 or k − 1 depending on whether xeq
is continuous or polychotomous

with k categories.
In the second method, rather than comparing the model at the current step [Step

(q)] to the model at the previous step [Step (q − 1)] we compare it to the model
at the last step [Step (S)]. We evaluate the p-value for the likelihood ratio test of
these two models and proceed in this fashion until this p-value exceeds α. This
tests that the coefficients for the variables added to the model from Step (q) to
Step (S) are all equal to zero. At any given step it has more degrees of freedom
than the test employed in the first method. For this reason the second method, on
occasion, may select a larger number of variables than the first method, but only
when rather liberal, large, values are used for the entry and removal criteria.

It is well known that the p-values calculated in stepwise selection procedures
are not p-values in the traditional hypothesis testing context. Instead, they should
be thought of as indicators of relative importance among variables. We recommend
that one err in the direction of selecting a relatively rich model following stepwise
selection. The variables so identified should then be subjected to the more intensive
analysis described in the previous section.

A common modification of the stepwise selection procedure just described is to
begin with a model at step zero that contains known important covariates. Selection
is then performed from among the other available variables. One instance when
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this approach may be useful is to select interactions from among those possible
from a main effects model.

Freedman (1983) urges caution when considering a model with many variables,
noting that significant linear regressions may be obtained from “noise” variables,
completely unrelated to the outcome variable. Flack and Chang (1987) have shown
similar results regarding the frequency of selection of “noise” variables. Thus, a
thorough analysis that examines statistical and clinical significance is especially
important following any stepwise method.

Other versions of stepwise selection are possible. One might choose to use
the previously described method but only enter variables, allowing no option for
removal at each step. This is called forward selection. Another popular method is to
begin at Step (0) with all p variables in the model and then proceed to sequentially
eliminate nonstatistically significant variables. This is called backward elimination.
We illustrate backward elimination in Section 4.3.2 as a way to approximate best
subset selection.

As an example, we apply the stepwise variable selection procedure to the GLOW
data analyzed using purposeful selection in Section 4.2. The reader is reminded that
this procedure should be viewed as a first step in the model building process—basic
variable selection. Subsequent steps such as determination of scale, as described in
Section 4.2, would follow. The calculations were performed in SAS, which uses
the Score Test for entry and the Wald test for removal of variables. The results are
presented in Table 4.28 in terms of the p-values to enter and remove calculated at
each step. The order of the variables given column-wise in the table is the order in
which they were selected. In each column the values below the horizontal line are
pE values and values above the horizontal line are pR values. The program was
run using pE = 0.15 and pR = 0.20.

We choose to use SAS as it has the option to display the step-by-step details
required for Table 4.28. One disadvantage of SAS is that it does not allow one to
group the design variables formed from a categorical covariate with more than two
levels for entry or removal. STATA does have this feature but has not provided
step-by-step detail. However the models selected by both SAS and STATA are the
same at Step (S).

Step (0): At Step (0) the program selects as a candidate for entry at Step (1) the
variable with the smallest p-value in the first column of Table 4.28. The vari-
able is history of prior fracture (PRIORFRAC). As seen in the table the
p-values of both PRIORFRAC and AGE are <0.0001, but the value of the
Score test (not shown) for PRIORFRAC is 23.8 while that for AGE is 21.6,
each with one degree of freedom. Hence PRIORFRAC was selected for entry
at Step (1).

Step (1): The program begins by fitting the model containing PRIORFRAC.
The program does not remove the variable just entered since we choose
the criterion such that pR > pE. This is true for the variable entered at any
step—not just the first step. The variable with the smallest p-value to enter
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Table 4.28 Results of Applying Stepwise Variable Selection Using the Score Test to
Select Variables and the Wald Test for Removal of Variables in the GLOW Data

Variable/Step 0 1 2 3 4 5 6 7

PRIORFRAC <0.001 <0.001 <0.001 0.002 0.003 0.003 0.007 0.009
AGE <0.001 <0.001 <0.001* <0.001 0.001 0.002 0.010 0.009
RATERISK3 0.006 0.046 0.017 0.018* 0.016 0.028 0.054 0.016
HEIGHT 0.002 0.009 0.0336 0.032 0.033* 0.022 0.011 0.016
MOMFRAC 0.017 0.021 0.027 0.051 0.032 0.034* 0.030 0.043
ARMASSIST 0.001 0.011 0.053 0.099 0.046 0.040 0.041* 0.056
RATERISK2 0.749 0.607 0.649 0.045 0.065 0.094 0.129 0.131*

BMI 0.738 0.745 0.217 0.110 0.128 0.091 0.342 0.333
WEIGHT 0.418 0.482 0.770 0.545 0.166 0.120 0.420 0.412
SMOKE 0.479 0.320 0.533 0.525 0.501 0.512 0.437 0.453
PREMENO 0.845 0.866 0.361 0.389 0.439 0.413 0.586 0.669

At each step the p-values to enter are presented below the horizontal line, and the p-value to remove
are presented above the horizontal line in each column. The asterisk denotes the maximum p-value to
remove at each step.

at step (1) is age at entry in the study (AGE) with p < 0.001, which is less
than 0.15 so the program moves to Step (2).

Step (2): The p-values to remove appear above the solid line in each column of
Table 4.28. We denote the largest p-value to remove with an “*”. The model
containing both PRIORFRAC and AGE is fit and we see that both p-values
to remove are <0.001. Since neither exceeds 0.20, the program moves to the
variable selection phase. The smallest p-value to enter among the remaining
variables not in the model is p = 0.017, for the design variable comparing
level 3 to level 1 of self-reported risk of fracture. Since the value is less than
0.15 the program proceeds to Step (3).

Step (3): At Step (3) Table 4.28 shows that the largest p-value to remove is for
the variable that just entered the model, RATERISK3 and, since this does not
exceed 0.20, the program moves to the variable selection phase. The smallest
p-value to enter among the remaining variables not in the model is for height
at enrollment in the study (HEIGHT) with p = 0.032. This value is less than
0.15 so the program proceeds to Step (4).

Step (4): At Step (4) the program finds that the maximum p-value to remove
is HEIGHT, which just entered the model. Hence it is not removed from the
model. In the selection phase the program finds that the minimum p-value
for entry is 0.032 for the variable mother had a fracture, MOMFRAC. Since
this value is less than 0.15, the program proceeds to Step (5).

Step (5): At Step (5) the largest p-value to remove is for MOMFRAC, which
just entered the model, so it is not removed. Next the program selects for
entry the variable “arms are needed to stand from a chair” (ARMASSIST).
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Since the p-value for entry of 0.040 is less than pE it enters the model at
Step (6).

Step (6): At Step (6) the variable with the largest p-value to remove is, again,
the variable that just entered, so none are removed. The variable with the
smallest p-value to enter is the design variable for self-reported rate of risk
at level 2 versus level 1, RATERISK2, with p = 0.129. Since this value is
less than 0.15 it enters the model at Step (7).

Step (7): The variable with the largest p-value to remove is RATERISK2, which
just entered the model so no variables are removed. At the selection for entry
phase we see that body mass index, BMI, has the smallest p-value, but its
value, 0.333, exceeds the criterion for entry of 0.15. The program stops at
Step (7) as no variables can be removed and none can enter using our chosen
criteria of pE = 0.15 and pR = 0.20.

If, for some reason, we wanted to see every variable enter the model then we
would have to rerun the program with much larger values. For example, at Step (7)
we see that the largest p-value for entry is 0.669 for early menopause, PREMENO.
So choosing pE = 0.80 and pR = 0.85 would probably allow all variables to enter
the model. Having said this, it would be highly unusual to choose a p-value for entry
that exceeds 0.50. The idea behind letting in variables that are unlikely to be in the
final model is to check for the possible confounding effect of marginally significant
variables. We know from practical experience that it is rare for a variable to be a
confounder if its estimated coefficient(s) in a multivariable model are significant at
0.15 or higher.

Before moving on, we note that the model selected by stepwise methods in
Table 4.28 contains the same seven covariates identified by purposeful selection
in Table 4.8. This is often, though not always, the case. The purposeful selection
model was further simplified by excluding RATERISK2, since it was not a con-
founder and subject matter experts felt it was reasonable to pool “same risk” and
“less risk” into a single reference category, thus using only RATERISK3. For the
time being we are going to use the model at Step (7) that includes both design
variables.

We noted that there are two methods to select the final model from a table
summarizing the steps. In our example, the program was run with pE = 0.15, a
value that, we believe, selects variables with significant coefficients; thus, it is not
necessary to go to the summary table to select the variables to be used in a final
model. The second method is based on comparing the model at each step to the
last step that–in work not shown–also selects the model at Step (7). We leave
performing stepwise selection on the GLOW data using pE = 0.80 and pR = 0.85,
with final model selection based on the second method as an exercise.

At the conclusion of the stepwise selection process we have only identified a
collection of variables that seem to be statistically important. If there were known
clinically important variables then these should have been added before proceeding
with stepwise selection of other covariates. If at the end of stepwise election there
are continuous covariates in the model, then at this point, one should determine
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their appropriate scale in the logit. The model contains age and height, both of
which were shown to be linear in the logit in Section 4.2.

Once the scale of the continuous covariates has been examined, and corrected
if necessary, we may consider applying stepwise selection to identify interactions.
The candidate interaction terms are those that seem clinically reasonable given the
main effect variables in the model. We begin at Step (0) with the main effects
model, including any clinically significant covariates, and sequentially select from
among the possible interactions. We can use either method 1 or method 2 to select
the significant interactions. The final model contains previously identified main
effects and significant interaction terms.

The same software may be used for stepwise selection of interactions as was
used for the selection of main effects. The difference is that all main effect variables
are forced into the model at Step (0) and selection is restricted to interactions. In
total there are 15 possible interactions listed in Table 4.29 where they are inverse
rank ordered by the p-values at the last step. We again use SAS to select the
interactions stepwise. We remind the reader that, in SAS, selection for entry is
based on the Score test, and the test for removal is based on the Wald test.

Before proceeding with stepwise selection of interactions we decided to remove
RATERISK2 from the model and keep RATERISK3. Thus, we have chosen to use
the recoded version of the self-reported risk variable from purposeful selection in
the previous section. There are 15 interactions that can be formed from the six main
effects and subject matter experts considered all 15 to be clinically reasonable.

Table 4.29 Results of Applying Stepwise Variable Selection to Interactions from the
Main Effects Model from the GLOW Study Using the Score Test to Select Variables
and the Wald Test to Remove Variables

Variable/Step 0 1 2

AGE*PRIORFRAC 0.024 0.025* 0.033
MOMFRAC*ARMASSIST 0.028 0.038 0.040*

HEIGHT*MOMFRAC 0.112 0.110 0.162
ARMASSIST*RATERISK3 0.135 0.123 0.174
PRIORFRAC*MOMFRAC 0.092 0.123 0.188
HEIGHT*ARMASSIST 0.206 0.184 0.252
HEIGHT*RATERISK3 0.319 0.308 0.0386
PRIORFRAC*ARMASSIST 0.636 0.399 0.423
AGE*RATERISK3 0.304 0.446 0.435
AGE*MOMFRAC 0.708 0.753 0.463
MOMFRAC*RATERISK3 0.465 0.468 0.580
AGE*HEIGHT 0.716 0.803 0.795
HEIGHT*PRIORFRAC 0.644 0.815 0.904
PRIORFRAC*RATERISK3 0.726 0.843 0.959
AGE*ARMASSIST 0.702 0.968 0.999

At each step the p-values to enter are presented below the horizontal line, and the p-value to remove
are presented above the horizontal line in each column. The asterisk denotes the maximum p-value to
remove at each step.
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The results in Table 4.29 show that only two of the interactions were selected. At
Step (1) the interaction of age and history of prior fracture (PRIORFRAC) entered
and at Step (2) the interaction of mother having had a fracture (MOMFRAC)
and need arms to rise from a chair (ARMASSIST) entered. The most significant
interaction among those not selected at Step (2) is that of HEIGHT and MOMFRAC
with p = 0.162, which is not less than the criterion for entry of 0.15 and hence
does not enter the model.

It is worthwhile to point out that the p-values for Step (0) in Table 4.29, which
are based on the Score test, are quite similar to those in the last column of Table 4.14
that are based on the likelihood ratio test.

Adding the two selected interactions to the main effects (all of which were
selected stepwise) yields the same model obtained by purposeful selection shown in
Table 4.16. This may not always be the case. In our experience, models obtained by
these two approaches rarely differ by more than a couple of variables. In a situation
where different approaches yield different models, we recommend proceeding with
a combined larger model via purposeful selection using both confounding and
statistical significance as criteria for model simplification.

Since the stepwise model is shown in Table 4.16 we do not repeat the results
in another table in this section.

In conclusion, we emphasize that stepwise selection identifies variables as candi-
dates for a model solely on statistical grounds. Thus, following stepwise selection of
main effects all variables should be carefully scrutinized for clinical plausibility. In
general, interactions must attain statistical significance to alter the point and inter-
val estimates from a main effects model. Thus, stepwise selection of interactions
using statistical significance can provide a valuable contribution to model identifi-
cation, especially when there are large numbers of clinically plausible interactions
generated from the main effects.

4.3.2 Best Subsets Logistic Regression

An alternative to stepwise selection of variables for a model is best subset selection.
This approach to model building has been available for linear regression for many
years and makes use of the branch and bound algorithm of Furnival and Wilson
(1974). Typical software implementing this method for linear regression identifies
a specified number of “best” models containing one, two, three variables, and
so on, up to the single model containing all p variables. Lawless and Singhal
(1978, 1987a, 1987b) proposed an extension that may be used with any nonnormal
errors model. The crux of their method involves application of the Furnival-Wilson
algorithm to a linear approximation of the cross-product sum-of-squares matrix
that yields approximations to the maximum likelihood estimates. Selected models
are then compared to the model containing all variables using a likelihood ratio
test. Hosmer et al. (1989) show that, for logistic regression, the full generality of
the Lawless and Singhal approach is not needed. Best subsets logistic regression
may be performed in a straightforward manner using any program capable of best
subsets linear regression. Also, some packages, including SAS, have implemented
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the Lawless and Singhal method in their logistic regression modules. The advantage
of these two approaches is that one may examine, and hence compare, several
different models selected by some criterion. If, however, one is merely interested
in obtaining the best model from the best subsets method, then a quick route to this
end is to employ a method described in Royston and Sauerbrei (2008, Chapter 2).
They discuss results showing that the model selected using stepwise backward
elimination with pR = 0.157 yields a model that agrees, in content, quite closely
with the best of the best subset selected models using a criterion such as AIC
from equation (4.4). The disadvantage of this quicker approach is that one is not
able to see the content of other best models. We illustrate best subsets selection
using the GLOW data. An important caveat to using best subsets selection is that,
as described, it only identifies a collection of main effects. As described in the
previous two sections, there is considerable work remaining in the model building
process after main effects are selected.

Applying best subsets linear regression software to perform best subsets logistic
regression is most easily explained using vector and matrix notation. In this regard,
we let X denote the n × (p + 1) matrix containing the values of all p independent
variables for each subject, with the first column containing 1 to represent the
constant term. Here the p variables may represent the total number of variables, or
those selected at the univariable stage of model building. We let V denote an n × n

diagonal matrix with general element νi = π̂i(1 − π̂i) where π̂i is the estimated
logistic probability computed using the maximum likelihood estimate, β̂, and the
data for the ith case, xi .

For the sake of clarity of presentation in this section, we repeat the expression
for X and V given in Chapter 2. They are as follows:

X =

⎡⎢⎢⎢⎣
1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

... . . .
...

1 xn1 xn2 · · · xnp

⎤⎥⎥⎥⎦
and

V =

⎡⎢⎢⎢⎣
π̂1

(
1 − π̂1

)
0 · · · 0

0 π̂2(1 − π̂2) · · · 0
... 0

. . .
...

0 · · · 0 π̂n(1 − π̂n)

⎤⎥⎥⎥⎦ .

As noted in Chapter 2, the maximum likelihood estimate is determined itera-
tively. It may be shown [see Pregibon (1981)] that β̂ = (X ′ VX)−1X ′ Vz, where
z = Xβ̂ + V−1r and r is the vector of residuals, r = (y − π̂). This representation
of β̂ provides the basis for use of linear regression software. It is easy to verify that
any linear regression package that allows weights produces coefficient estimates
identical to β̂ when used with zi as the dependent variable and case weights, νi ,
equal to the diagonal elements of V.
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If we wanted to replicate the results of the maximum likelihood fit from a logistic
regression package using a linear regression package, for each case we would first
calculate the value of a dependent variable as follows:

zi = β̂0 +
p∑

j=1

β̂j xij + (yi − π̂i)

π̂i(1 − π̂i)

= ln

(
π̂i

1 − π̂i

)
+ (yi − π̂i)

π̂i(1 − π̂i)

(4.5)

and a case weight
νi = π̂i(1 − π̂i). (4.6)

Note that all we need is access to the fitted values, π̂i , to compute the values of
zi and νi . Next, we would run a linear regression program using the values of zi

for the dependent variable, the values of xi for our vector of independent variables,
and the values of νi for our case weights.

Proceeding further with the linear regression, it can be shown that the residuals
from this fit are

(zi − ẑi ) = (yi − π̂i)

π̂i(1 − π̂i)

and the weighted residual sum-of-squares produced by the program is

n∑
i=1

νi(zi − ẑi )
2 =

n∑
i=1

(yi − π̂i)
2

π̂i(1 − π̂i)
,

which is X2, the Pearson chi-square statistic from a maximum likelihood logis-
tic regression program. It follows that the mean residual sum-of-squares is s2 =
X2/(n − p − 1). The estimates of the standard error of the estimated coefficients
produced by the linear regression program are s times the square root of the diag-
onal elements of the matrix (X ′ VX)−1. Thus, to obtain the correct values given in
equation (2.5) we would have to divide the estimates of the standard error produced
by the linear regression program by s, the square root of the mean square error (or
standard error of the estimate).

The ability to duplicate the maximum likelihood fit in a linear regression package
forms the foundation of the suggested method for performing best subsets logistic
regression. In particular, Hosmer et al. (1989) show that use of any best subsets
linear regression program with values of zi in equation (4.5) for the dependent
variable, case weights νi shown in equation (4.6), and covariates xi , produces for
any subset of q variables, the approximate coefficient estimates of Lawless and
Singhal (1978). Hence, we may use any best subsets linear regression program to
execute the computations for best subsets logistic regression. One practical dif-
ficulty is that there is not much software available that actually implements the
traditional best subsets linear regression. A recent user-supplied contribution to the
STATA package by Lindsey and Sheather (2010) does perform this analysis but
only provides the content of the best model of each size.
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The subsets of variables selected for “best” models depend on the criterion
chosen for “best.” In best subsets linear regression a number of different criteria
have been used to select variables. Two are based on the concept of the proportion of
the total variation explained by the model. These are R2, the ratio of the regression
sum-of-squares to the total sum-of-squares, and adjusted R2 (or AR2), the ratio
of the regression mean squares to the total mean squares. Since the adjusted R2

is based on mean squares rather than sums-of-squares, it provides a correction for
the number of variables in the model. This is important, as we must be able to
compare models containing different variables and different numbers of variables.
If we use R2, the best model is always the model containing all p variables, a result
that is not at all helpful. An obvious extension for best subsets logistic regression
is to base the R2 measures, in a manner similar to that shown in Chapter 5, on
deviance rather than Pearson chi-square. However, we do not recommend the use
of the R2 measures for best subsets logistic regression. Instead, we prefer to use
Cq , a measure developed by Mallows (1973) or the Akaike Information Criterion
(AIC) developed by Akaike (1974) and defined in equation (4.4).

Mallows’ Cq is a measure of predictive squared error. We note that the measure
is denoted as Cp by other authors. We chose to use “q” instead of “p” in this text
since we use p to refer to the total number of possible variables, while q refers to
some subset of variables.

A summary of the development of the criterion Cq in linear regression may be
found in many texts on this subject, for example, Ryan (1997). Hosmer et al. (1989)
show that when best subsets logistic regression is performed via a best subsets linear
regression package in the manner described previously in this section, Mallows’
Cq has the same intuitive appeal as it does in linear regression. In particular they
show that for a subset of q of the p variables

Cq = X2 + λ∗

X2/(n − p − 1)
+ 2(q + 1) − n,

where
X2 =

∑
{(yi − π̂i)

2/[π̂i(1 − π̂i)]},

the Pearson chi-square statistic for the model with p variables and λ∗ is the mul-
tivariable Wald test statistic for the hypothesis that the coefficients for the p − q

variables not in the model are equal to zero. Under the assumption that the model fit
is the correct one, the approximate expected values of X2 and λ∗ are (n − p − 1)

and p − q, respectively. Substitution of these approximate expected values into
the expression for Cq yields Cq = q + 1. Hence, models with Cq near q + 1 are
candidates for a best model. The best subsets linear regression program selects as
best that subset with the smallest value of Cq .

The Akaike Information Criterion (AIC) does not have a reference standard
based on the number of variables, in or out of the model. The best model is simply
the one with the smallest value of

AICq = −2 × Lq + 2 × (q + 1). (4.7)
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We modified the definition in equation (4.6) by adding the subscript “q” to
denote the fact that AIC is being computed over models of different sizes.

Some programs, for example, SAS’s PROC LOGISTIC, provide a best subsets
selection of covariates based on the Score test for the variables in the model.
For example, the best two variable model is the one with the largest Score test
among all two variable models. The output lists the covariates and Score test for
a user specified number of best models of each size. The difficulty one faces
when presented with this output is that the Score test increases with the number
of variables in the model. Hosmer et al. (2008) show how an approximation to
Mallows’ Cq can be obtained from Score test output in a survival time analysis.
A similar approximation can be obtained from Cq for logistic regression. First, we
assume that the Pearson chi-square statistic is equal to its mean, that is X2 ≈ (n −
p − 1). Next we assume that the Wald statistic for the p − q excluded covariates
may be approximated by the difference between the values of the Score test for
all p covariates and the Score test for q covariates, namely λ∗

q ≈ Sp − Sq . This
results in the following approximation

Cq = X2 + λ∗

X2/(n − p − 1)
+ 2(q + 1) − n

≈ (n − p − 1) + (Sp − Sq)

1
+ 2(q + 1) − n

≈ Sp − Sq + 2q − p + 1. (4.8)

The value of Sp is the Score test for the model containing all p covariates and
is obtained from the computer output. The value of Sq is the Score test for the
particular subset of q covariates and its value is also obtained from the output. Use
of the best subsets linear regression package should help identify, in the same way
its application in linear regression does, a core of important covariates from the
p possible covariates. After identifying the important variables, we suggest that
further modeling proceed in the manner described in Section 4.2 for purposeful
selection of covariates. Users should not be lured into accepting the variables
suggested by a best subset strategy without considerable critical evaluation.

We illustrate best subsets selection using the Score test method implemented in
SAS with the GLOW data. The variables used were the 10 indicated in Table 1.7,
with the exception of the fracture risk score, since it is a composite formed from
many individual covariates. Self-reported rate of risk is modeled using two design
variables RATERISK2 and RATERISK3. In Table 4.30 we present the results of
the five best models selected using Cq in (4.8) as the criterion. In addition to the
variables selected, we show the values of Cq and the values of Sq for each model
and the value of AICq from (4.7).

Using only the summary statistics, we would select Model 1 as the best model
since it has the smallest values of both Cq and AICq . It is interesting to note that
this model is different from the model selected by purposeful selection (Model 5),
and stepwise (Model 4), in that height is not in the model, but weight and BMI are
included. The differences in the values of both Cq and AICq over the five models
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Table 4.30 Five Best Models Identified Using the Score Test Approximation of
Mallow’s Cq , Table Lists Model Covariates, Approximate Cq, Sq , and
AICq (S11 = 59.1672)

Model Model Covariates Sq Cq AICq

1 PRIORFRAC, AGE, WEIGHT, BMI,
MOMFRAC, ARMASSIST, RATERISK2,
RATERISK3

57.4602 7.707 523.1954

2 PRIORFRAC, AGE, WEIGHT, BMI,
MOMFRAC, ARMASSIST, RATERISK3

55.4424 7.724 523.5289

3 PRIORFRAC, AGE, WEIGHT, BMI,
MOMFRAC, RATERISK2, RATERISK3

55.2662 7.901 523.1987

4a PRIORFRAC, AGE, HEIGHT, MOMFRAC,
ARMASSIST, RATERISK2, RATERISK3

55.2657 7.902 523.5004

5b PRIORFRAC, AGE, HEIGHT, MOMFRAC,
ARMASSIST, RATERISK3

53.2400 7.927 523.8178

aMain effects model identified by stepwise selection.
bMain effects model identified by purposeful selection.

are negligible. Thus choice among the five models comes down, as it should, to
subject matter considerations.

Note that all five models contain PRIORFRAC, AGE, and MOMFRAC. Four of
the five contain ARMASSIST. Three models contain WEIGHT and BMI and two
contain HEIGHT. Three models contain both RATERISK2 and RATERISK3 and
two contain only RATERISK3. Hence, we conclude that the core of important
variables in these five models is PRIORFRAC, AGE, MOMFRAC, ARMAS-
SIST, RATERISK2, and RATERISK3, with body composition modeled either by
WEIGHT and BMI or by HEIGHT.

In using purposeful selection in Section 4.2 we found that the estimated coeffi-
cient for RATERISK2 was not significant and, in consultation with experts, decided
to only use RATERISK3, which is a design variable for level 3 versus 1 and
2. Now the choice is between model 2 and model 5. Further analysis showed
that the estimated coefficient for ARMASSIST is not significant, p = 0.125, in
model 2. Deleting it yields a sixth best model (not shown) with Cq = 8.182 and
AICq = 523.87. Thus, the choice is now between two models, each with six covari-
ates. The more important difference between the two models is that one contains
HEIGHT and the other contains WEIGHT and BMI. We leave further comparison
of these two models as an exercise.

In practice, once we have finalized the main effects model, we could employ best
subsets selection to decide on possible interactions. We leave this as an exercise.

Application of the backwards elimination approach described by Royston and
Sauerbrei (2008, Sections 2.6.3 and 2.9.3) with pR = 0.157 to the GLOW data
yields the same best subsets model, Model 1 in table 4.30. This is not always going
to be the case, but this easy to use approach should always identify a reasonable
set of model covariates for further evaluation.
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The advantage of the proposed method of best subsets logistic regression is
that more models can be quickly screened than is possible with the other variable
selection methods. There is, however, one potential disadvantage with the best
subsets approach: we must be able to fit the model containing all of the possi-
ble covariates. In analyses that include a large number of variables this may not
be possible. Numerical problems can occur when we overfit a logistic regression
model. If the model has many variables, we run the risk that the data are too thin to
be able to estimate all the parameters. If the full model proves to be too rich, then
some selective weeding out of obviously unimportant variables with univariable
tests may remedy this problem. Another approach is to perform the best subsets
analysis using several smaller “full” models. Numerical problems are discussed in
more detail in the next section.

In summary, the ability to use weighted least squares best subsets linear regres-
sion software or the Score test approximation method to identify variables for
logistic regression should be kept in mind as a possible aid to variable selection.
As is the case with any statistical selection method, the clinical basis of all variables
should be addressed before any model is accepted as the final model.

4.3.3 Selecting Covariates and Checking their Scale Using Multivariable
Fractional Polynomials

Sauerbrei et al. (2006) describe software for SAS, STATA and R that imple-
ments a multivariable fractional polynomial method. Royston and Sauerbrei (2008,
Chapter 6) describe the method in detail and it is now available in distributed
STATA. The method combines elements of backward elimination of nonsignificant
covariates with an iterative examination of the scale of all continuous covariates
and can be used with either the closed or sequential test procedures described in
Section 4.2.

The multivariable fractional polynomial procedure requires that two significance
levels be specified: the first, α1, for the test for exclusion from or addition to, the
model and the second, α2, to assess the significance of the fractional polyno-
mial transforms of a continuous covariate. We use the same notation as Royston
and Sauerbrei (2008) to denote the method and its significance levels, namely
mfp(α1, α2).

The method begins, cycle 1, by fitting a multivariable model that contains the
user-specified covariates. This initial collection, ideally, would include all study
covariates. However, we may have a setting where this is not possible, for any
one of a number of numerical problems. If this occurs, a reasonable solution is
to choose a subset of covariates that includes the clinically important covariates
and those significant at, say, the 25 percent level on univariable analysis. This is,
basically, the starting point of purposeful selection.

The initial fit at cycle 1 includes all covariates as linear terms in the logit. In sub-
sequent fits, each covariate is modeled according to a specified number of degrees
of freedom. All dichotomous and design variables have one degree of freedom,
meaning they are not candidates for fractional polynomial transformation. Contin-
uous covariates may be forced to be modeled linearly by specifying one degree
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of freedom, or may be candidates for a one- or two-term fractional polynomial by
specifying 2 or 4 degrees of freedom, respectively.

Following the initial multivariable linear fit, variables are considered in descend-
ing order of their Wald statistics. For covariates modeled with one degree of
freedom, a partial likelihood ratio test is used to assess their contribution to the
model, and its significance relative to the chosen level of significance, α1, is noted.
Continuous covariates are modeled using either the closed or sequential test method,
noting whether the covariate should be removed using α1, kept linear, or trans-
formed using α2. In keeping with our approach to stepwise selection and best
subsets we set the level of significance for staying in the model at α1 = 0.15. We
use the five percent level of significance, α2 = 0.05, for testing the need to trans-
form. In the example, we use the closed test procedure, which is the default method
in STATA. This completes the first cycle.

The second cycle begins with a fit of a multivariable model containing the
significant covariates from cycle one (i.e., the model with significant continuous
covariates, that may be transformed and significant dichotomous covariates). All
covariates, examined in descending order of significance, are considered again
for possible transformation, inclusion or exclusion from the model. Continuous
covariates with a significant fractional polynomial transformation are entered trans-
formed, which becomes their null model. The point of this step is twofold: (1)
does the transformation “linearize” the covariate in the logit? and (2) does the
transformation affect scaling of other covariates? Each covariate’s level of sig-
nificance is noted as well as the need to transform. This completes the second
cycle.

The procedure stops when the results of two consecutive cycles are the same. The
minimum number is two. More than two cycles occur if additional transformations
of continuous covariates are suggested in cycle two and beyond, or if the level
of significance of the partial likelihood ratio test for contribution to the model,
changes the decision to include or exclude a covariate.

We use mfp(0.15, 0.05) on the GLOW500 data from the GLOW Study with the
same 10 covariates used in the previous three sections and model self-reported risk
of fracture with two design variables. We note that in STATA one may consider
design variables formed from a categorical covariate with more than two levels
as a group or separately. In the example, we consider the two design variables
for self-reported risk of fracture separately, as that is how they were modeled in
stepwise and best subsets. The method took two cycles to converge. We present
the results from cycle 1 in Table 4.31, and cycle 2 in Table 4.32.

The cycle begins by fitting the model containing all 11 covariates. In Table 4.31,
the first covariate processed is having had a prior fracture, PRIORFRAC, so we
know it had the largest Wald statistic. Because PRIORFRAC is dichotomous the
first test, line∗ 1, compares the 10 covariate model not containing PRIORFRAC to
the 11 covariate model containing PRIORFRAC. This is indicated in the last two

∗The STATA output does not include line numbers. We included them in Table 4.31 and Table 4.32 to
help in discussing the results.
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Table 4.31 Results from the Cycle 1 Fit of MFP Applied to the GLOW500 Data

Line Variable Model (vs.) Deviance G p Powers (vs.)

1 PRIORFRAC null lin. 511.004 7.167 0.007∗ . 1
2 Final 503.837 1
3 AGE null FP2 510.869 7.629 0.106∗ . 3 3
4 lin. 503.837 0.598 0.897 1
5 Final 503.837 1
6 RATERISK3 null lin. 510.335 6.498 0.011∗ . 1
7 Final 503.837 1
8 MOMFRAC null lin. 507.944 4.107 0.043∗ . 1
9 Final 503.837 1

10 RATERISK2 null lin. 506.123 2.286 0.131∗ . 1
11 Final 503.837 1
12 BMI null FP2 506.098 4.524 0.340 . −2 1
13 Final 506.098 .
14 ARMASSIST null lin. 508.155 2.058 0.151 . 1
15 Final 508.155 .
16 WEIGHT null FP2 510.209 6.103 0.192 . −2 –2
17 Final 510.209 .
18 HEIGHT null FP2 514.905 6.689 0.153 . −2 –2
19 Final 514.905 .
20 SMOKE null lin. 515.296 0.391 0.532 . 1
21 Final 515.296 .
22 PREMENO null lin. 515.844 0.547 0.459 . 1
23 Final 515.844 .

∗p < chosen significance level for inclusion.
†p < chosen significance level for transformation.

columns of line 1 where “.” denotes that the covariate is not in the model and “1”
denotes that it is modeled linearly in the logit. The value in the Deviance column,
511.004, in line 1 is for the model that excludes PRIORFRAC. The value in the
G column of line 1, 7.167, is the difference between 511.004 and the Deviance
for the model containing PRIORFRAC. The value in the p column in line 1 is the
significance level using one degree of freedom, Pr[χ2(1) ≥ 7.167] = 0.007. The
“*” denotes that the test is significant at the specified significance level for inclusion
in the model, α1 = 0.15. Because the test is significant and since PRIORFRAC is
dichotomous the final model in line 2 is the one that includes PRIORFRAC. Hence,
in this case, the value of the Deviance in line 1 is the sum of the Deviance in line 2
and G in line 1 and the “1” in the “Powers” column means it enters as a single-term
(i.e., linear in the logit).

The second covariate processed is age, AGE, as it had the second largest Wald
statistic. This variable is continuous and, as such, it is first modeled using the best
two-term fractional polynomial transformation with the powers shown in the last
column of line 3, (3, 3), that is [AGE3, AGE3 × ln(AGE)]. The partial likelihood
ratio test comparing this best two-term fractional polynomial modeling of age to
the 10 covariate model that excludes age is, from line 3, G = 7.269 which, with 4



142 model-building strategies and methods for logistic regression

Table 4.32 Results from the Cycle 2 Fit of MFP Applied to the GLOW500 Data

Line Variable Model (vs.) Deviance G p Powers (vs.)

1 PRIORFRAC null lin. 524.264 8.42 0.004∗ . 1
2 Final 515.844 1
3 AGE null FP2 529.003 13.744 0.008∗ . 3 3
4 lin. 515.844 0.584 0.9 1
5 Final 515.844 1
6 RATERISK3 null lin. 523.740 7.897 0.005∗ . 1
7 Final 515.844 1
8 MOMFRAC null lin. 518.899 3.055 0.080∗ . 1
9 Final 515.844 1

10 RATERISK2 null lin. 519.360 3.517 0.061∗ . 1
11 Final 515.844 1
12 BMI null FP2 515.844 4.433 0.351 . −2 –2
13 Final 515.844 .
14 ARMASSIST null lin. 515.844 2.41 0.121∗ . 1
15 Final 513.434 1
16 WEIGHT null FP2 513.434 3.611 0.461 . −2 –2
17 Final 513.434 .
18 HEIGHT null FP2 513.434 7.749 0.101∗ . −2 –2
19 lin. 507.500 1.816 0.612 1
20 Final 507.500 1
21 SMOKE null lin. 507.500 0.587 0.444 . 1
22 Final 507.500 .
23 PREMENO null lin. 507.500 0.181 0.67 . 1

∗p < chosen significance level for inclusion.
†p < chosen significance level for transformation.

degrees of freedom, yields Pr[χ2(4) ≥ 7.629] = 0.106. Since this is significant at
the 0.15 level the two-term fractional polynomial model is compared to the linear
model in line 4. The partial likelihood ratio test in line 4 is G = 0.598, which with
3 degrees of freedom, yields p = 0.897. Since two different parameterizations of
age are being compared, the p-value is compared to α2 = 0.05 and the test is
not significant. Hence, there is no further modeling of age with the final model,
age linear, given in line 5. Had the two-term fractional polynomial model been
significantly different from the linear model the best one-term fractional polynomial
model would have been found and compared to the two-term model, again at the
α2 level of significance.

The next three variables examined are the dichotomous covariates RATERISK3,
MOMFRAC and RATERISK2. Each is significant at the α1 = 0.15 level and thus
will be retained in the model fit at cycle 2.

The covariate BMI is next examined in line 12. The partial likelihood ratio test
comparing the best two-term fractional polynomial model, powers (−2, 1), with
the model that excludes BMI is G = 4.524 which, with four degrees of freedom,
results in p = 0.340. This is not significant at the α1 = 0.15 level, so BMI is not
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included in the model fit in cycle 2. The remaining five covariates, ARMASSIST,
WEIGHT, HEIGHT, SMOKE, and PREMENO, are individually not significant at
the 0.15 level. However, the significance of the partial likelihood ratio tests for
ARMASSIST and HEIGHT have p-values that are close to the threshold of 0.15.
It is possible that these two could be selected for inclusion in cycle 2 when a
smaller model is fit.

The model fit at cycle two contains the first five covariates in Table 4.31, namely
PRIORFRAC, AGE, RATERISK3, MOMFRAC and RATERISK2. The results of
cycle 2 are shown in Table 4.32.

The results in the first 13 lines of Table 4.32 are similar to those in Table 4.31 for
these covariates. The difference between these tables is that the partial likelihood
ratio tests in Table 4.32 are based now, not on the full 11 covariate model, but
on a five covariate model. In line 14 we see that ARMASSIST contributes to the
model at the 0.15 level with p = 0.121. In line 18 we see that HEIGHT also is
significant (p = 0.101). Hence at the next cycle a seven covariate model is fit: the
five in lines 1–10 plus ARMASSIST and HEIGHT. The decisions based on this
fit are similar to those in Table 4.31. Hence the procedure converges at cycle 2.

We note that application of mfp(0.15, 0.05) to the GLOW500 data yields exactly
the same model identified by purposeful selection and stepwise selection. The model
obtained using best subsets was similar but selected BMI and WEIGHT in place of
HEIGHT. Much of the congruence between the various methods can be attributed
to the fact that, in this example, none of the continuous covariates had significant
fractional polynomial transformations.

To provide an example when continuous covariates are transformed we apply
mfp(0.15, 0.05) to the Burn Study data analyzed in Section 4.2. The covariates
modeled (see Table 1.9) are total burn surface (TBSA), age (AGE), burn involv-
ing an inhalation injury (INH_INJ), race (RACE, 0 = non-white, 1 = white),
burn involving a flame (FLAME) and gender (GENDER, 0 = female, 1 = male).
The procedure converged in two cycles and we show the results from cycle 2 in
Table 4.33.

The results for TBSA and AGE in Table 4.33 provide good examples of when
fractional polynomial transformations are found to be significant with the mfp
method.

The first variable processed is TBSA. The results in line 1 show that the two-
term fractional polynomial model, powers (−2, 0.5), is significant when compared
to the model not containing TBSA with p < 0.001. Hence the procedure now
compares the two-term fractional polynomial model to the model linear in TBSA
in line 2. With p = 0.001, the test is significant at the α2 = 0.05 level, as indicated
by the “+”. Next, the two-term model is compared to the best one-term fractional
polynomial model [power (0.5)]. The significance level, computed with 2 degrees
of freedom is p = 0.520. Since this is not significant at the 0.05 level the process
stops and the one-term fractional polynomial model is the final model for TBSA,
shown in line 4.

The results for age in lines 5–8 are similar to those for TBSA in that the final
model is the one-term fractional polynomial model with power (2). The results for
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Table 4.33 Results from the Cycle 2 Fit of MFP Applied to the Burn Data

Line Variable Model (vs.) Deviance G p Powers (vs.)

1 TBSA null FP2 528.892 208.263 <0.001∗ . −2 .5
2 lin. 336.842 16.213 0.001† 1
3 FP1 321.935 1.306 0.52 0.5
4 Final 321.935 0.5
5 AGE null FP2 505.022 184.862 <0.001∗ . 1 1
6 lin. 329.589 9.429 0.024† 1
7 FP1 321.935 1.775 0.412 2
8 Final 321.935 2
9 INH_INJ null lin. 339.521 17.586 0.000∗ . 1

10 Final 321.935 1
11 RACE null lin. 325.869 3.934 0.047∗ . 1
12 Final 321.935 1
13 FLAME null lin. 321.935 1.838 0.175 . 1
14 Final 321.935 .
15 GENDER null lin. 321.935 0.129 0.719 . 1
16 Final 321.935 .

∗p < chosen significance level for inclusion.
†p < chosen significance level for transformation.

inhalation injury in lines 9 and 10 show it is significant as is race in lines 11 and
12. The last two covariates processed, FLAME and GENDER, do not contribute
to the model with significance levels of p = 0.175 and p = 0.719 respectively.
As noted the mfp procedure converged at two cycles. The resulting model with
four covariates,

√
TBSA, AGE2, INH_INJ and RACE, is the same model initially

obtained using purposeful selection in Section 4.2. As we noted there, we added
AGE to the model for purposes of ease of interpretation, even though its coefficient
was not significant when added to the model containing AGE2.

The mfp(α1, α2) method is clearly an extremely powerful analytic modeling
tool, which on the surface, would appear to relieve the analyst of having to think
too hard about model content. This is not the case, of course. We recommend
that, if one uses this approach then its model be considered as a suggestion for
a possible main effects model, much in the way that stepwise and best subsets
identify possible models. The model needs a thorough evaluation to be sure all
covariates and transformations make clinical sense, that transformations are not
caused by a few extreme observations and, importantly, that excluded covariates
are not confounders of model covariate estimates of effect. We highly recom-
mend that you spend time with Royston and Sauerbrei (2008, Chapter 6), Sauer-
brei et al. (2006) and the host of other excellent papers cited that describe in
detail, the development and use of both fractional polynomials and the mfp(α1, α2)

procedure.
In summary, stepwise, best subsets and multivariable fractional polynomials

have their place as covariate selection methods, but it is always the responsibility
of the user to choose the content and form of the final model.
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4.4 NUMERICAL PROBLEMS

In previous chapters we have occasionally mentioned various numerical problems
that can occur when fitting a logistic regression model. These problems are caused
by certain structures in the data coupled with the lack of appropriate checks in some
logistic regression software. The goal of this section is to illustrate these structures
in certain simple situations and illustrate what can happen when the logistic regres-
sion model is fit to such data. The issue here is not one of model correctness or
specification, but the effect certain data patterns have on the computation of param-
eter estimates. Some of these problems are due to “thin” data, namely not enough
outcomes, usually y = 1, and/or small frequencies for a categorical covariate. In
some settings use of exact logistic regression methods, discussed in Section 10.3
can provide correctly estimated coefficients and standard errors. In this section we
present results from running various example data in several different packages.

For some of the examples we do not state which package produced the results.
The reason is that packages are revised and the results we get in one version with
these ill conditioned data might well change in the next release. Also different
packages might provide different output from the same ill conditioned data. The
point of the examples is to learn the numerical signs and symptoms that indicate a
numerical problem in the data.

Perhaps the simplest and thus most obvious situation is when we have a fre-
quency of zero in a contingency table. An example of such a contingency table is
given in Table 4.34. The estimated odds ratios and log-odds ratios using the first
level of the covariate as the reference group are given in the first two rows below
the table. The point estimate of the odds ratios for level 3 versus level 1 is infinite
since all subjects at level 3 responded. The results of fitting a logistic regression
model to these data are given in the last two rows. The estimated coefficient in
the first column is the intercept coefficient. The particular package used does not
really matter as many, but not all, packages produce similar output. One program
that does identify the problem is STATA. It provides an error message that x = 3
perfectly predicts the outcome and the design variable for x = 3 is not included

Table 4.34 A Contingency Table with a Zero Cell Count
and the Results of Fitting a Logistic Regression Model to
these Data

Outcome / x 1 2 3 Total

1 7 12 20 39
0 13 8 0 21

Total 20 20 20 60

ÔR 1 2.79 inf
ln(ÔR) 0 1.03 inf
β̂ −0.62 1.03 11.7
ŜE 0.47 0.65 34.9
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in the fit of the model. Other programs may or may not provide some sort of
error message indicating that convergence was not obtained or that the maximum
number of iterations was used. What is rather obvious, and the tip-off that there is
a problem with the model, is the large estimated coefficient for the second design
variable and especially its large estimated standard error.

A common practice to avoid having an undefined point estimate is to add one-
half to each of the cell counts. Adding one-half may allow us to move forward
with the analysis of a single contingency table, but such a simplistic remedy is
rarely satisfactory with a more complex data set.

As a slightly more complex example we consider the stratified 2 by 2 tables
shown in Table 4.35. The stratum-specific point estimates of the odds ratios are
provided below each 2 by 2 table. The results of fitting a series of logistic regression
models are provided in Table 4.36.

In the case of the data shown in Table 4.35 we do not encounter problems until
we include the stratum z, by risk factor x, and interaction terms, x × z_2 and x × z_3
in the model. The addition of the interaction terms results in a model that is equiva-
lent to fitting a model with a single categorical variable with six levels, one for each
column in Table 4.35. Thus, in a sense, the problem encountered when we include
the interaction is the same one illustrated in Table 4.34. As was the case when fitting
a model to the data in Table 4.34, the presence of a zero cell count is manifested
by an unbelievably large estimated coefficient and estimated standard error.

The presence of a zero cell count should be detected during the univariable
screening of the data. Knowing that the zero cell count is going to cause problems

Table 4.35 Stratified 2 by 2 Contingency Tables with a Zero
Cell Count Within One Stratum

Stratum (z) 1 2 3

Outcome / x 1 0 1 0 1 0

1 5 2 10 2 15 1
0 5 8 2 6 0 4

Total 10 10 12 8 15 5
ÔR 4 15 inf

Table 4.36 Results of Fitting Logistic Regression Models to the Data in Table 4.35

Model 1 2

Variable Coeff. Std. Err. Coeff. Std. Err.

x 2.77 0.72 1.39 1.01
z_2 1.19 0.81 0.29 1.14
z_3 2.04 0.89 0.00 1.37
x × z_2 1.32 1.51
x × z_3 11.54 50.22
Constant −2.32 0.77 −1.39 0.79
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in the modeling stage of the analysis we could collapse the categories of the variable
in a meaningful way to eliminate it, eliminate the category completely, or if the
variable is at least ordinal scale, treat it as continuous.

The type of zero cell count illustrated in Table 4.35 results from spreading
the data over too many cells. This problem is not likely to occur until we begin
to include interactions in the model. When it does occur, we should examine
the three-way contingency table equivalent to the one shown in Table 4.35. The
unstable results prevent us from determining whether, in fact, the interaction is
important. To assess the interaction we first need to eliminate the zero cell count.
One way to do this is by collapsing categories of the stratification variable. For
example, in Table 4.35 we might decide that values of z = 2 and z = 3 are similar
enough to pool them. The stratified analysis would then have two 2 by 2 tables
the second of which results from pooling the tables for z = 2 and z = 3. A second
approach is to define a new variable equal to the combination of the stratification
variable and the risk factor and to pool over levels of this variable and model it as
a main effect variable. Using Table 4.35 as an example, we would have a variable
with six levels corresponding to the six columns in the table. We could collapse
levels five and six together. Another pooling strategy would be to pool levels
three and five, and four and six. This pooling strategy is equivalent to collapsing
over levels of the stratification variable. The net effect is the loss of degrees of
freedom commensurate with the amount of pooling. Twice the difference in the
log-likelihood for the main effects only model, and the model with the modified
interaction term added, provides a statistic for the significance of the coefficients
for the modified interaction term.

The fitted models shown in Tables 4.34 and 4.36 resulted in large estimated coef-
ficients and estimated standard errors. In some examples we have encountered, the
magnitude of the estimated coefficient was not large enough to suspect a numerical
problem, but the estimated standard error always was. Hence, we believe that the
best indicator of a numerical problem in logistic regression is the estimated stan-
dard error. In general, any time that the estimated standard error of an estimated
coefficient is large relative to the point estimate, we should suspect the presence
of one of the data structures described in this section.

A second type of numerical problem occurs when a collection of the covariates
completely separates the outcome groups or, in the terminology of discriminant
analysis, the covariates discriminate perfectly. For example, suppose that the age
of every subject with the outcome present was greater than 50 and the age of all
subjects with the outcome absent was less than 49. Thus, if we know the age of a
subject we know with certainty the value of the outcome variable. In this situation
there is no overlap in the distribution of the covariates between the two outcome
groups. This type of data has been shown by Bryson and Johnson (1981) to have
the property of monotone likelihood. The net result is that the maximum likelihood
estimates do not exist [see Albert and Anderson (1984); Santner and Duffy (1986)].
In order to have finite maximum likelihood estimates we must have some overlap
in the distribution of the covariates in the model.
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Table 4.37 Estimated Slope (β̂x), Constant (β̂0), and Estimated Standard Errors
(̂SE) when the Data Have Complete Separation, Quasicomplete Separation, and
Overlap

Estimates/x6 5.5 6.0 6.05 6.10 6.15 6.20 8.0

β̂x 20.3 7.5 3.7 3.0 2.6 2.3 0.2

ŜE 36.0 42.4 6.3 4.4 3.6 3.0 0.7

β̂0 −116.6 −44.0 −22.2 −17.9 −15.3 −13.5 −0.1

ŜE 208.1 254.3 38.2 27.1 22.1 189.1 5.8

A simple example illustrates the problem of complete separation and the results
of fitting logistic regression models to such data. Suppose we have the following 12
pairs of covariate and outcome, (x, y) : (1,0), (2,0), (3,0), (4,0), (5,0), (x6 = 5.5,
or 6.0, or 6.05, or 6.1, or 6.2, or 8.0, y6 = 0), (6,1), (7,1), (8,1), (9,1), (10,1),
(11,1). The results of fitting logistic regression models when x6 takes on one of the
values 5.5, 6.0, 6.05, 6.1, 6.2, or 8, using SAS version 9.2 are given in Table 4.37.
When we use x6 = 5.5 we have complete separation and all estimated parameters
are huge, since the maximum likelihood estimates do not exist. SAS provides a
warning but at the same time provides the values of the estimates at the last iteration,
leaving the ultimate decision about how to handle the output to the user. Similar
behavior occurs when the value of x6 = 6.0 is used. SAS notes this fact and again
provides estimates. When overlap is at a single or a few tied values the configuration
was termed by Albert and Anderson (1984) as quasi complete separation. As the
value of x6 takes on values greater than 6.0 the overlap becomes greater and the
estimated parameters and standard errors begin to attain more reasonable values.
The sensitivity of the fit to the overlap depends on the sample size and the range
of the covariate. The tip-off that something is amiss is, as in the case of the zero
cell count, the very large estimated coefficients and especially the large estimated
standard errors. Other programs, including STATA, do not provide output when
there is complete or quasicomplete separation, for example, x6 = 5.5 or x6 = 6. In
the remaining cases STATA and SAS produce similar results.

The occurrence of complete separation in practice depends on the sample size,
the number of subjects with the outcome present, and the number of variables
included in the model. For example, suppose we have a sample of 25 subjects and
only five have the outcome present. The chance that the main effects model demon-
strates complete separation increases with the number of variables we include in the
model. Thus, the modeling strategy that includes all variables in the model is par-
ticularly sensitive to complete separation. Albert and Anderson (1984) and Santner
and Duffy (1986) provide rather complicated diagnostic procedures for determining
whether a set of data displays complete or quasicomplete separation. Albert and
Anderson (1984) recommend that in the absence of their diagnostic, if one looks at
the estimated standard errors and if these tend to increase substantially with each
iteration of the fit, then one can suspect the presence of complete separation. As
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Table 4.38 Data Displaying Near Collinearity Among the
Independent Variables and Constant

Subject x1 x2 x3 y

1 0.225 0.231 1.026 0
2 0.487 0.489 1.022 1
3 −1.080 −1.070 1.074 0
4 −0.870 −0.870 1.091 0
5 −0.580 −0.570 1.095 0
6 −0.640 −0.640 1.010 0
7 1.614 1.619 1.087 0
8 0.352 0.355 1.095 1
9 −1.025 −1.018 1.008 0

10 0.929 0.937 1.057 1

noted in Chapter 3 the easiest way to address complete separation is to use some
careful univariable analyses. The occurrence of complete separation is not likely
to be of great clinical importance as it is usually a numerical coincidence rather
than describing some important clinical phenomenon. It is a problem we must work
around.

As is the case in linear regression, model fitting via logistic regression is also
sensitive to collinearities among the independent variables in the model. Most soft-
ware packages have some sort of diagnostic check, like the tolerance test employed
in linear regression. Nevertheless it is possible for variables to pass these tests
and have the program run, but yield output that is clearly nonsense. As a simple
example, we fit logistic regression models using STATA to the data displayed in
Table 4.20. In the table x1 ∼ N(0, 1) and the outcome variable was generated by
comparing a U(0, 1) variate, u, to the true probability π(x1) = ex1/(1 + ex1) as
follows: if u < π(x1) then y = 1, otherwise y = 0. The notation N(0, 1) indicates
a random variable following the standard normal (mean = 0, variance = 1) distri-
bution and U(a, b) indicates a random variable following the uniform distribution
on the interval [a, b]. The other variables were generated from x1 and the con-
stant as follows: x2 = x1 + U(0, 0.1) and x3 = 1 + U(0, 0.01). Thus, x1 and x2
are highly correlated and x3 is nearly collinear with the constant term. The results
of fitting logistic regression models to various subsets of the variables shown in
Table 4.38 are presented in Table 4.39.

The model that includes the highly correlated variables x1 and x2 has both very
large estimated slope coefficients and estimated standard errors. For the model
containing x3 we see that the estimated coefficients are of reasonable magnitude
but the estimated standard errors are much larger than we would expect. The model
containing all variables is a composite of the results of the other models. In all cases
the tip-off for a problem comes from the aberrantly large estimated standard errors.

In a more complicated data set, an analysis of the associations among the covari-
ates using a collinearity analysis similar to that performed in linear regression
should be helpful in identifying the dependencies among the covariates. Belsley
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Table 4.39 Estimated Coefficients and Standard Errors from Fitting Logistic
Regression Models to the Data in Table 4.38

Var. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

x1 1.4 1.0 104.2 256.2 79.8 272.6
x2 −103.4 256.0 −78.3 272.5
x3 1.8 20.0 −11.1 206.6
Cons. −1.0 0.8 −0.3 1.3 −2.7 21.1 11.4 27.8

et al. (1980) discuss a number of methods that are implemented in many linear
regression packages. One would normally not employ such an in-depth investiga-
tion of the covariates unless there was evidence of degradation in the fit similar
to that shown in Table 4.39. An alternative is to use the ridge regression methods
proposed by Schaefer (1986).

In general, the numerical problems of a zero cell count, complete separation, and
collinearity, are manifested by extraordinarily large estimated standard errors and
sometimes by a large estimated coefficient as well. New users and those without
much computer experience are especially cautioned to look at their results carefully
for evidence of numerical problems. In many settings all is not lost. Heinze and
Schemper (2002) and Heinze (2006) discuss and illustrate the use of methods that
can produce valid parameter estimates and confidence intervals with data contain-
ing zero frequency cells and/or separation. These methods include exact logistic
regression and penalized likelihood methods, which we discuss and illustrate in
Section 10.3.

EXERCISES

1. Show algebraically and with a numerical example of your choice that the
restricted cubic spline functions in equation (4.3) meet at the three knots.

2. In the modeling of the GLOW500 data using purposeful selection age was
modeled as linear in the logit. We noted that the estimated coefficients for
the quartile design variables for age in Table 4.10 suggested an alternative
parameterization: using the design variable for the fourth quartile AGE_4.
This parameterization of age was not pursued further. Proceed with purposeful
selection using AGE_4. To save time, assume that your main effects model is
the one in Table 4.9 but with AGE replaced by AGE_4. Compare your model
to the one in Table 4.15 that resulted when age was modeled as linear in the
logit. Which model do you think is the better one for estimating risk factors
for fracture?

3. In the modeling of the Burn Injury data questions came up as to how to model
age. There were essentially three choices: linear (power 1), quadratic (powers
1 and 2) and the best fractional polynomial model (power 2). In the text we
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proceeded with power 2. Perform selection of interactions for the other two
parameterizations and save your work for an exercise on model evaluation in
Chapter 5.

4. Demonstrate best subset selection of interactions by beginning with the main
effects model from the GLOW500 data.

5. The restricted cubic spline analysis for age in the Burn Injury Study shown
in Table 4.21 used four knots at the 5th, 35th, 65th, and 95th percentiles (see
Table 4.1). Verify that spline functions formed from these four knots provide a
better model than using three or five knots placed at the respective percentiles
in Table 4.1.

6. Consider the data from the Myopia Study described in Section 1.6.6 whose
variables are described in Table 1.10. The binary outcome variable is MYOPIC
(0 = Yes, 1 = No). Consider as independent variables all others in Table 1.10
except spherical equivalent refraction (SPHEQ) as it is used to define the
outcome variable, the composite of near-work hours (DIOPTERHR) and study
year (STUDYYEAR).

(a) Use purposeful selection to obtain what you feel is the best model for
estimating the effect of the risk factors on myopia. This analysis must
include identification of the scale in the logit of all continuous covariates
and selection of interactions. Assume that all possible interactions among
your main effects are clinically reasonable.

(b) Repeat problem 6(a) using stepwise selection of covariates (main effects
and then interactions among main effects forcing in the main effects).

(c) Repeat problem 6(a) using best subset selection of covariates with Mal-
lows’ Cq (main effects and then interactions among main effects forcing
in the main effects).

(d) Repeat problem 6(a) using multivariable fractional polynomial selection
of main effects followed by purposeful selection of interactions.




